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a b s t r a c t

The host–pathogen interaction drives infectious disease dynamics at the individual, population and

community levels. Here I present and analyze a model of the vertebrate immune response to

mycoplasma infections, and use it to identify which pathogen and host immune characteristics drive

patterns of Mycoplasma gallisepticum (MG) infections in the house finch (Carpodacus mexicanus) and

other passerine birds. I also address which host and pathogen characteristics most affect host

infectiousness and survival. These results imply that much of the observed variation in the house

finch likely arises from variation among birds in the effectiveness of their non-specific immune

response to MG, and that the host and pathogen characteristics most likely to influence host

infectiousness and survival are the intrinsic pathogen growth rate, the strength and efficiency of the

non-specific immune response and characteristics affecting the effectiveness of the specific response.

These findings suggest that molecular-level study of how MG and other mycoplasmas interact with a

host’s non-specific and inflammatory responses should reveal much about the relationships between

host infectiousness, pathogen load, and disease symptoms in these systems.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The host–pathogen interaction is at the core of every infectious
disease system, and provides an important foundation from
which to study infectious disease at the individual, population
and ecosystem levels. Central to this interaction is the interplay
between the pathogen and the host’s immune defenses, which
can largely determine (1) both short and long term consequences
of infection for the host and (2) host infectiousness and pathogen
transmission. The immune–pathogen interaction also mediates
how various external factors act to shape the progression and
consequences of an infectious disease.

The motivation for this paper is a bacterial disease caused by the
pathogen Mycoplasma gallisepticum (MG), which has been the focus
of many studies since its appearance in wild passerine birds in
eastern North America around 1993 (Luttrell et al., 1996; Fischer
et al., 1997; Dhondt et al., 1998; Hartup et al., 1998; Luttrell et al.,
1998; Hochachka and Dhondt, 2000; Hartup et al., 2001a, 2001b;
Altizer et al., 2004a, 2004b; Faustino et al., 2004; Hosseini et al.,
2004; Kollias et al., 2004; Dhondt et al., 2005; Farmer et al., 2005;
Hawley et al., 2005, 2005a; Hotchkiss, 2005; Lindstrom, 2005;
ll rights reserved.

tute, The Ohio State Univer-

Columbus, OH 43210, USA.
Sydenstricker et al., 2005; Altizer et al., 2006; Cherry et al, 2006;
Dhondt et al., 2006; Hawley et al., 2006; Hochachka and Dhondt,
2006; Ley et al., 2006; Sydenstricker et al., 2006; Cooper et al., 2007;
Dhondt et al., 2007a; Dhondt, 2007b; Hawley, 2007; Dhondt, 2008;
Grodio, 2008; Hurtado, 2008; Hawley, 2010; Grodio et al., 2011).
Originally known as a respiratory pathogen of domestic poultry, MG
has been well studied prior to its jump to passerine hosts in the
early 1990s. Its primary host is the house finch (Carpodacus

mexicanus), a widespread species introduced into eastern North
America from southern California in the early 1940s (Elliott and
Aribib, 1953; Aldrich and Weske, 1978). MG can also infect the
American goldfinch (Carduelis tristis) and other Cardueline finches,
and has been detected in various other bird species (Fischer et al.,
1997; Mikaelian et al., 2001; Hartup et al., 2001a, DeCoste et al.,
pers. comm.). Disease symptoms include severe inflammation of the
conjunctiva (the mucosal surface of the eye), lethargy, and in some
cases death (Luttrell et al., 1998; Dhondt et al., 2005).

There are multiple reasons to study M. gallisepticum in wild
birds. First, this disease shares many of the hallmarks of myco-
plasmal infections in other organisms including some model
organisms (rodents), other wildlife (e.g., some ungulates), domes-
tic poultry, pigs and humans (Brown et al., 2005; Marco et al.,
2009; Baseman and Tully, 1997; Hu, 2009; Messick, 2004).
Second, this wildlife disease is relatively easy to study in situ

since disease symptoms can be visually observed in wild birds
and also since these organisms can be studied in captivity. Third,
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this system provides an opportunity to study host–pathogen
coevolution during the emergence of a novel infectious disease.
Following its appearance during the early 1990s MG led to
significant declines in the eastern population of the house finch
and today continues to spread into western North America. The
genomes of some MG strains have been sequenced and the
functional genomics of MG and other mycoplasmas are fairly
well understood (Papazisi et al., 2003; Blanchard and Browning,
2005). Furthermore, recent evidence shows that strains of MG
circulating among house finches differ in virulence, which has
changed over time.

Fig. 1 illustrates the range of disease progression among house
finches using data from experimentally infected captive birds
(Grodio, 2008; Grodio et al., 2011; Hawley, 2010). The typical
course of infection in the house finch ranges from a very mild
acute illness to a more persistent disease with prolonged severe
inflammation. Symptomatic infections begin with a brief asymp-
tomatic period followed by mild to severe inflammation of the
mucosal tissues surrounding the eye and inside the eyelids (the
conjunctiva). This diseased state may clear within a week or two,
however in some individuals it can persist for months or may be
so severe as to result in death (Sydenstricker et al., 2006; Kollias
et al., 2004; Roberts et al., 2001). These persistent infections are
typically symptomatic, although the existence of chronic asymp-
tomatic infections has been put forth as one possible mechanism
for interannual persistence of MG in wild house finch populations.
Observations thus far suggest that the resolution of symptoms
typically (though not exclusively) follows a reduction in pathogen
load by the host’s immune response.
Fig. 1. Mycoplasma gallisepticum infections in the house finch (Carpodacus mexicanus)

antibody levels (B) for 20 individuals from the common garden experiment described

seven most severe infections from that experiment (N ¼40) and 13 that resolved sy

gallisepticum. Panels on the right show average symptoms (C) and approximate pathoge

median values for three qualitatively similar groups are shown: mild acute infections, p

symptoms over the duration of the experiment. ‘‘Eye Score’’ is a standard measure of the

the avian equivalent of mammalian IgG.
The goal of this paper is to develop and analyze a dynamic
model of the vertebrate immune response to a localized myco-
plasma infection and use it to answer the following questions
about M. gallisepticum in wild passerine birds. First, empirical
study of this system has shown significant variation in the
progression of M. gallisepticum infections within and between
host species. Such variation is common in wildlife disease
systems with multiple host species. To what extent can this
variation be explained by a relatively simple model of the
pathogen and host immune interaction? What aspects of this
variation may result from factors not included this model?
Second, preliminary data suggest that there has been some
evolutionary change in virulence (i.e., the severity of host symp-
toms) among circulating strains of M. gallisepticum (Hawley et al.,
pers. comm.). Virulence evolution in this system is likely shaped
by pathogen load, which drives host infectiousness (pathogen
fitness), and by host disease symptoms, which drive host mortal-
ity risk and thus survival (host fitness). Which pathogen and host
immune characteristics most affect host infectiousness and host
mortality risk? Can likely targets for empirically detecting viru-
lence-driven selection in the host or pathogen be identified using
this model?

Mycoplasma infections are typically quite persistent and
induce severe inflammation by eliciting a frustrated and ineffec-
tive host immune response. To quote Simecka (2005), ‘‘it is likely
that almost every component of the host immune system is
involved in the response to mycoplasma disease.’’ In particular,
both specific and non-specific immune responses are involved in
controlling infections, and mycoplasmas may manipulate the host
range from very mild to very severe. Panels on the left show symptoms (A) and

in Hawley (2010) and Grodio et al. (2011). The means for groups are shown: the

mptoms of infection from the group (N ¼20) infected with a 2006 isolate of M.

n load (D) from a second experiment (Grodio, 2008; Grodio et al., 2011). Here the

rolonged acute infections, and severe infections characterized by persistent, severe

severity of conjunctivitis (Kollias et al., 2004; Sydenstricker et al., 2006) and IgY is
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immune response by interfering with regulatory pathways (Citti
et al., 2005). Modeling the immune response to mycoplasmas
poses a considerable challenge because so many aspects of the
immune system contribute to controlling mycoplasma infections,
and because some aspects of the pathogen–immune interaction
are not well understood. The coarse grained modeling approach
used here attempts to reduce that complexity by making func-
tional categorizations of the various immune components and
their main effects. The key benefit of this approach is that it yields
a relatively simple, mathematically tractable model which cap-
tures the main biological processes that shape these immune–
pathogen dynamics.

The remainder of the paper is organized as follows. Section 2
summarizes the key aspects of the host immune response to
mycoplasmas, and a brief history of mycoplasmal conjunctivitis in
wild birds. Section 3 introduces a mathematical model of the host
immune response to a localized M. gallisepticum infection as well
as the suite of further simplified models which are analyzed in the
Results of Section 4. After describing the dynamics of these
models, the remainder of Section 4 addresses how parameter
value changes affect different measures of pathogen and host
fitness. Section 5 concludes with a summary and discussion of the
main results and their implications.
Fig. 2. Model variables and main interactions included in the immune response

Model (3.1).
2. Biological background

It is known from observations of captive and wild individuals
infected with M. gallisepticum that considerable variation in
disease progression exists between and within host species, and
between different pathogen strains (Dhondt, 2007b, 2008;
Hawley, 2010). Many factors likely contribute to this variation
by affecting the immune–pathogen interaction. These include
pathogen strain, host genetics, nutrition, ambient temperature,
time of year, host social status, and the route of initial
infection—e.g., orally vs. directly into the conjunctiva (Dhondt,
2007b; Hawley, 2007, 2010; Altizer et al., 2006; Hawley et al.,
2005a, Dhondt et al., pers. comm.).

2.1. Mycoplasmas and the host immune response

Mycoplasmas belong to the class of bacteria known as the
Mollicutes (Edward and Kanarek, 1960; Edward and Freundt,
1967; Brown et al., 2007). Mollicutes are among the smallest
known bacteria (as small as 0:3mm), tend to be highly host species
specific, have no cell wall, and unlike many other bacteria cannot
produce lipopolysaccharide (LPS), a cell wall component that
elicits a strong immune response in vertebrates. As a group,
mycoplasmas interact closely with host mucosal membranes
and infections tend to be both persistent and accompanied by
severe inflammation.

Based on what is known about the vertebrate immune
response to mycoplasmas (Blanchard and Browning, 2005), the
typical M. gallisepticum (MG) infection in house finches likely
proceeds as follows. Once a small population of MG cells is
introduced into the conjunctiva, individual cells must survive
the first line of host immune defenses (e.g., resting macrophages,
antimicrobial peptides, etc.) and attach to the surface of the
epithelial cells lining the mucosal membrane (Luttrell et al.,
1996). It is assumed that, in the absence of an immune response,
the MG population would grow exponentially until reaching a
maximum density determined by resource limitation and
other physical constraints. During colonization of the host,
close interaction with the host epithelial cells activates the non-
specific immune components (e.g., macrophages) and induces the
host’s inflammatory response. The number and activity level of
phagocytic cells at the infection site increases, however these may be
ineffective at killing MG without the presence of specific antibodies
(Hickman-Davis et al., 1997; Simecka, 2005, pp. 485–493). This
ineffective non-specific immune response slows, but does not
stop, the growing pathogen population. Antigen-presenting cells
associated with the non-specific immune response then activate
specific immune components by transporting MG antigens into
the lymphatic system. There they initiate B- and T-cell selection
and maturation which later results in the production of MG-
specific antibodies that allow phagocytic cells like macrophages
to more effectively neutralize MG. This results in clearance of the
infection unless MG evades the immune response (e.g., via surface
antigen turnover, Citti et al., 2005) or the response is otherwise
ineffective. As is commonly the case with mycoplasma infections,
pathogen persistence is associated with sustained inflammation
from the host’s frustrated and ineffective immune response. In
house finches, this includes visible signs of conjunctival inflam-
mation accompanied by epithelial and lymphoid hyperplasia
(Luttrell et al., 1996; Dhondt et al., 2005).
3. Model

3.1. Model equations

Based on the biological details in Section 2 and simplifying
assumptions described in this Section, one can derive the innate
(non-specific) immune response model described in Reynolds
et al. (2006), which is extended here to include the adaptive
(specific) immune response to mycoplasmas as described in
Simecka (2005). The state variables represent the combined
activity of various immune system components involved in the
response to mycoplasma infections, grouped into functional
categories as illustrated in Fig. 2. Scaled to reduce the number
of parameters, the state variables are the pathogen density p,
active non-specific (innate) immune components n, and progeni-
tor cells y0 that mature into active specific immune components y

(e.g., maturing and antibody producing B-cells, respectively). The
model equations are

dp

dt
¼ kpgpð1�pÞ�

kmp

mpþp
�KðyÞnp ð3:1aÞ

dn

dt
¼

nþkpp

xnþnþkpp
�mnn ð3:1bÞ

dy0

dt
¼
ðnpÞa

xayþðnpÞa
�my0y0 ð3:1cÞ

dy

dt
¼ my0y0�myy ð3:1dÞ
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where K(y) is an increasing function of y with Kð0Þ40. The
unscaled model equations and their relationship to the model
by Reynolds et al. (2006) are given in Appendix A.

The pathogen population is assumed to follow Eq. (3.1a),
which assumes exponential growth at low pathogen density and
an upper limit to pathogen density in the absence of an effective
immune response. This is modeled as logistic growth with
intrinsic growth rate kpg in the absence of a host immune
response (pathogen units have been scaled to maximum density
p¼1 as detailed in Appendix A). The second term in Eq. (3.1a)
models the ability of local (unactivated) immune defenses to
neutralize an initially small population of invading pathogen as
detailed in Reynolds et al. (2006).

The activated non-specific immune components n (see Eqs.
(3.1a) and (3.1b)) include phagocytic and antigen-presenting
cells like macrophages as well as other cells like heterophils
(avian neutrophils). Activation of innate immune components
results from both the presence of pathogens and some positive
feedback, with deactivation occurring at rate mn. Together, they
are assumed to activate the specific immune response (see
Eq. (3.1c)) and to neutralize pathogens at per-capita rate K(y).
This removal rate is increased by the actions of the specific
immune response, e.g., by the binding of antibodies to MG.

To incorporate the specific immune response, variables repre-
senting the maturing (y0) and active (y) specific immune compo-
nents are modeled with Eqs. (3.1c) and (3.1d). This assumes that
the primary role of the specific immune response is to produce
antibodies that enhance the efficiency of pathogen removal by
innate immune components (e.g., phagocytic cells). The first term
in Eq. (3.1c) models the activation of the specific immune
components y0 by antigen-presenting cells during an active infec-
tion. Activation is modeled using a saturating response to the level
of pathogen p and innate immune activity n. Once activated,
maturation occurs at rate my0 to produce specific immune compo-
nents which then decay at rate my. Mathematically, the maturation
process simply introduces a delay in the production of active
specific immune components (e.g., antibodies).

Though not included in Eqs. (3.1), the symptoms of disease
appear to largely result from the host immune response, yet it is
unknown whether these symptoms harm or benefit the pathogen,
Table 1
Variables and parameter values of the scaled model given by Eq. (3.1

Appendix A, Table A1. Time units are hours unless otherwise stated

Value

Variable

p 0�1

n 0�1=mn

y0 0�1=my0

y 0�1=my

t .

Parameter

kpg 0.1

km 1.5�10�8

mp 1�10�8

Kmin 40

Kmax 4Kmin

y 6

x 200

xy 8.29�10�6

kp 2.5�109

xn 199

mn 0.05

a 6

my0 0.0037

my 0.0016
nor whether they help or hinder the immune response. For this
work, it is assumed that the immune–pathogen dynamics are
largely unaffected by disease symptoms, and that those symp-
toms are generated by a combination of both pathogen and
immune activity as detailed in Section 4.4.

3.2. Simplified models and important subsystems

In formulating Model (3.1) the complexity of the vertebrate
immune system is simplified by adopting a ‘‘top down’’ perspec-
tive that highlights how the immune system functions during
mycoplasma infections. Many biological questions about the
immune response to mycoplasmas can therefore be framed as
mathematical questions about the dynamics of Eqs. (3.1), but
despite this model’s relative simplicity it only permits limited
mathematical analysis.

In order to describe the dynamics of Model (3.1) beyond those
limited analytical results, the dynamics of a suite of simpler
models, which either approximate Eqs. (3.1) or are key subsys-
tems of that model, are also presented. Computational results are
also provided to illustrate the immune–pathogen dynamics of
Model (3.1) for particular parameter regimes (see Table 1 in the
next section).

The simplified models considered in this section primarily
arise from the fact that different immune processes occur across a
wide range of time scales (see Segel and Perelson, 1991 and
Appendix B). It is therefore assumed that the non-specific
immune activity (n) rapidly responds to changes in pathogen
density (p), which itself changes quickly relative to the slower
dynamics of the specific immune response (y).

The dynamics of these simplified models are presented in the
next section as follows. The section begins by describing the
pathogen dynamics in the absence of the host immune response.
Then the dynamics of the innate response are described by
considering the p–n subsystem in the absence of a changing
specific immune response, i.e., KðyÞ ¼ Kny is treated as a constant
(see Fig. 2). This approximates the fast time scale dynamics of
Model (3.1). Using standard separation of time scales techniques,
the slow time scale dynamics can be approximated by using a
simplified model which combines the p–n dynamics into a single
). These values are based on the unscaled model parameters in

.

Description

Rescaled pathogen density

Rescaled active innate components

Rescaled maturing specific immune components

Rescaled active specific immune components

Rescaled damage from the immune response

Pathogen growth rate

Maximum removal by local innate components

Half-saturation constant for local innate components

Kð0Þ; Baseline active innate pathogen removal rate

Maximum removal rate, specific components present

Determines steepness of K(y) at y¼ xny

Half-saturation value for activation of specific response

Half-saturation constant for pathogen removal rate K(y)

Pathogen activation of the innate response

Half-saturation value for activation of innate response

Rate of active innate component loss

Determines response steepness at half-saturation value xy

Maturation rate of specific immune components

Rate of specific immune component loss
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equation governing the pathogen dynamics and a second equa-
tion governing the dynamics of the specific immune response
(this simplified, slow time scale model is accordingly referred to
as the p–y model).

3.3. Model parameterization

Parameter values for Model (3.1) are shown in Table A1, and
are determined by the scaling equations and unscaled model
parameter values are given in Appendix A. These values are used
to motivate certain simplifying assumptions, and to illustrate
dynamics. Each parameter represents a particular biological
quantity and values for those quantities have been chosen based
on empirically derived quantities, where possible. The remaining
parameter values were chosen to yield model dynamics similar to
experimentally observed infection dynamics (Dhondt et al., 2005;
Dhondt, 2008; Kollias et al., 2004; Sydenstricker et al., 2005,
2006). Because relatively few details are known about the avian
immune system, many parameter values were based on those in
Reynolds et al. (2006).
Fig. 3. Pathogen dynamics in the absence of an active immune response (i.e.,

following Eq. (4.1)). Three possibilities exist, and depend on the relative strength of

the host’s baseline immune defenses km which here increases from low (panel A) to

very high (C). In panel A, km � 0 so the effective intrinsic growth rate r0 is positive

and the dynamics are similar to logistic growth. Panel B shows the result of

increasing km until r0 becomes negative. This results in a strong Allee effect (and

bistability) where initial pathogen densities must be higher than pcrit (an unstable

equilibrium) to increase toward the steady state density pmax. In panel C, further

increases in km result in the loss of the persistence steady state pmax, leaving the

host completely immune to infection. The transitions between these different

states occur via a transcritical bifurcation (A to B) and a saddle-node bifurcation

(B to C), as detailed in Appendix C.
4. Results

4.1. Establishing the infection

The very early stages of infection are largely free from control
by the host’s immune response, and follow the single equation

dp

dt
¼ kpgpð1�pÞ�

kmp

mpþp
ð4:1Þ

Once a naive host is inoculated (density pð0Þ51), the pathogen
population must overcome the host’s baseline immune defenses
in order to persist and proliferate. This first line of defense is
modeled by the second term in Eq. (4.1) and affects the host–
pathogen dynamics in two ways: First, it may cause a strong Allee
effect for the pathogen population where initial densities below a
critical size pcrit decline toward zero instead of increasing and
establishing an infection. Second, it reduces the maximum attain-
able pathogen density (pmaxr1) by decreasing an important
threshold quantity, the effective intrinsic growth rate of the
pathogen (see Appendix C),

r0 � kpg�km=mp ð4:2Þ

The relationship between the strength of these baseline immune
defenses (i.e., the magnitude of km) and the two phenomena
just mentioned are illustrated in Fig. 3 and can be described as
follows.

In the absence of these defenses (i.e., if km¼0), the pathogen
population follows simple logistic growth toward pmax ¼ 1 (here
r0 � kpg is positive). Increasing the strength of the baseline
immune defenses km40, the attracting pathogen density pmax

decreases toward p¼ 1�mp while a third equilibrium value
pcrit o0 increases toward 0 and r0 decreases toward 0. Further
increasing km results in r0, pmax and pcrit simultaneously passing
through 0, 1�mp and 0, respectively (see Fig. 3B). This leaves the
threshold value pcrit positive, with both the maximum pathogen
density pmax and the state of health (p¼0) locally attracting. A
necessary condition here and in Model (3.1) for having bistability
with the origin is that r0o0. Increasing km even further causes
pcrit and pmax to move toward one another (see Fig. 3B,C) until
they meet and vanish, leaving the host completely immune to
infection. See Appendix C for additional details.

The inclusion of these baseline immune defenses (i.e., assum-
ing km40) can lead to interesting dynamics under Model (3.1),
but they also obscure how other immune components help
determine different infection outcomes. To clarify the role of
other immune components, results presented in Sections 4.2 and
4.3 first assume negligible baseline immune defenses (km¼0), and
then describe how those dynamics change by including such
defenses (km40).

4.2. Early pathogen control: non-specific immunity

The non-specific immune components (n) play two important
roles during a newly established infection: they directly eliminate
pathogen and help activate the specific immune response. During
a mycoplasma infection, a susceptible host’s non-specific immune
response is often ineffective and requires the specific immune
response to clear the infection (Simecka, 2005). Accordingly, the
non-specific immune response is important in shaping the timing,
severity and persistence of infections across different hosts and
host species.

To describe how the non-specific immune response shapes
infection dynamics, the fast time scale dynamics of Model (3.1)
can be approximated by holding the specific immune response (y)
constant. In the full Model (3.1), y and K(y) both change relatively
slowly during an active infection. Defining the constant Kny ¼

KðyÞ, Model (3.1) becomes

dp

dt
¼ kpgp 1�pð Þ�

kmp

mpþp
�Knynp ð4:3aÞ

dn

dt
¼

nþkpp

xnþnþkpp
�mnn ð4:3bÞ

If baseline immune defenses are negligible (i.e., if km¼0), then
there is no Allee effect. An infection in this case will always
approach either a positive steady-state pathogen density pn40
and level of immune activity nn40, or the infection will be
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cleared by a self-sustaining inflammatory response with steady
state nn40 (see Appendix C and Reynolds et al., 2006 for details).
Since self-sustained inflammatory responses are currently
unknown in the motivating biological system, the focus now
turns to the persistence steady state (pn, nn) to determine under
what conditions pn is significantly greater than 0.

Figs. 4A and B (where km¼0) show how slowly increasing the
net effectiveness of the immune response (Kny) reduces the
attracting pathogen level pn in a nearly linear fashion until pn is
very near 0 (see arrow, Fig. 4B). Interestingly, any further
increases in Kny allow the pathogen to persist at very low levels
relative to the maximum possible densities. This persistence
results from the absence of an Allee effect when km¼0 and from
the very low saturation threshold (xn=kp � 0) for the activation of
the non-specific response according to Eq. (4.3b) and Table 1. If
activation of the non-specific response saturates at higher patho-
gen densities, then this transition is far less abrupt (compare
Figure panel 4A with C-F).

If baseline immune defenses are sufficiently strong (km40),
these dynamics change as expected from Section 4.1. Baseline
immune defenses can induce an Allee effect that hinders or prevents
the establishment of infection and allows complete pathogen
clearance by the immune response. Increasing Kny, the dynamic
changes may be similar to the km¼0 case, however if baseline
Fig. 4. Example n- and p-nullclines (solid and dashed curve, respectively) illustrating th

occur where the nullclines intersect. Panel A shows the possible dynamics assuming

nullclines and equilibria more clearly using different values. If the self-sustaining inflam

that state or the unique persistence equilibrium (pn) is attracting depending on whethe

(stable) persistence equilibrium pn (see text and Appendix C for stability conditions). Pan

and nn o0, using a broader range of Kny values than shown in A. Panels D–F shows how

bistability. Panel E and F illustrate how the nullclines (and persistence equilibria) chan

increasing strength of baseline immune defenses (increasing km), respectively.
immune defenses are very strong such increases can yield a more
abrupt clearance of the pathogen via a saddle-node bifurcation as
shown in Fig. 4E. These baseline immune defenses also reduce the
attracting pathogen density pn, although this reduction is very small
for biologically relevant parameter values. For more details regard-
ing the Model (4.3) dynamics see Appendix C.

4.2.1. Simplifying the p-n subsystem

In addition to the biological motivations for discussing the
dynamics of the p–n subsystem (4.3), the results in Section 4.2
help simplify Model (3.1) to clarify how the specific immune
response (y) shapes infection outcomes. To further simplify
Models (3.1) and (4.3) two additional assumptions are made.
First, since self-sustained inflammatory responses are unknown
in this system, assume a negligible amount of positive feedback in
the activation of the non-specific immune response, so

dn

dt
¼

kpp

xnþkpp
�mnn ð4:4Þ

This rules out the potential for a self-sustaining inflammatory
response (see Appendix C.3).

Second, the non-specific immune response (n) responds
rapidly to changes in other model variables for parameter values
like those in Table 1. This fast non-specific response together with
e dynamics of the p–n subsystem (4.3). Equilibria (filled¼stable, empty¼unstable)

values similar to those in Table 1 with km¼0 (no bistability). Panel C shows the

matory response value nn � 1=mn�xn is positive (shaded square in C), then either

r or not pn40. If nn o0, then the only equilibria are the (unstable) origin and the

el B shows how pn changes with increasing immune efficiency Kny assuming km¼0

assuming km 40 introduces multiple interior equilibria (pn ,nn40) and can lead to

ge with increasing efficiency of the specific immune response (increasing Kny) and
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Eq. (4.4) implies that n rapidly tracks changes in pathogen density
p according to the quasi-steady state value

nðpÞ ¼
1

mn

kpp

xnþkpp

� �
ð4:5Þ

obtained by assuming the right-hand side of Eq. (4.4) equals 0
(see Appendix B). Hence, the dynamics of this simplified p–n

subsystem can be approximated by the single equation

dp

dt
¼ kpgpð1�pÞ�

kmp

mpþp
�KnynðpÞp ð4:6Þ

Since Eq. (4.6) is a one dimensional ODE, one can analyze its
dynamics completely. As detailed in Appendices C.3 and C.4, it
behaves just like the simplified p–n model (Eqs. (4.3a) and (4.4))
except there are no cycling dynamics. Any equilibrium pathogen
value pn of the simplified p–n model is necessarily an equilibrium
of Eq. (4.6), thus there can be up to three equilibria in the unit
interval, in addition to the origin (see Fig. C1, Appendix C.4). The
stability of the origin depends on the sign of r0, as expected, and
no self-sustained inflammatory response is possible in the
absence of pathogen (i.e., nð0Þ ¼ 0). Any equilibrium pathogen
density pn under Eq. (4.6) is locally stable if the slope of the
simplified p–n model’s n-nullcline is greater than that of the p-
nullcline at pn, and is unstable otherwise. The largest such
equilibrium (always less than 1) is always stable when positive.

4.3. Pathogen persistence and the specific immune response

This section describes how the specific immune response
shapes the outcome of infection when the non-specific response
fails to clear the infection on its own. In doing so two questions
are addressed: First, when does the steady state pathogen density
pn correspond to high or very low pathogen densities? Second,
Fig. 5. Examples of how the specific immune response efficiency (Kmax) and an Allee

pathogen density pn and specific immune activity yn are shown for a range of Kmax valu

Allee effect. Panels C, D show qualitatively equivalent dynamics to A, B. Increasing Kmax,

With no Allee effect (km � 0), additional increases in Kmax permit low-level pathogen

(km 40), clearance can occur. The transition between persistence and clearance can

homoclinic bifurcation that abruptly expands the basin of attraction for the pathogen-f

Table 1. Panels B, D use km¼1.5�10�8 and km¼4.8�10�4, respectively. Panels C, D u
how do different levels of specific and non-specific immune
efficacy affect pn?

Using Eq. (4.6), the role of the specific immune response (y) in
Model (3.1) can be described by making the additional simplify-
ing assumption that the delay in activating the specific immune
response is negligible. Simulation results suggest that this affects
the timing of the specific immune response, but has little effect on
the asymptotic dynamics. These assumptions yield the simplified
slow time scale model

dp

dt
¼ kpgð1�pÞ�

km

mpþp
�KðyÞnðpÞ

 !
p ð4:7aÞ

dy

dt
¼
ðnðpÞpÞa

xayþðnðpÞpÞ
a�myy ð4:7bÞ

which has a single immune response variable y. Here the
efficiency of pathogen removal K(y) increases with increasing y,
and the quasi-equilibrium value of the non-specific immune
response nðpÞ is given by Eq. (4.5). As a working example, assume
K(y) is sigmoidal

KðyÞ ¼ Kminþ
ðKmax�KminÞy

y

xyþyy

� �
ð4:8Þ

where the minimum value Kð0Þ ¼ Kmin corresponds to the patho-
gen removal rate of the non-specific immune system alone (y¼0),
and Kmax is the maximum pathogen removal rate.

The course of infection under Model (3.1) can be divided into
two stages: an early acute phase largely determined by the p–n

subsystem dynamics, followed by either clearance or persistence
of the infection according to the dynamics of the p–y model (4.7).
Whether or not an acute infection is cleared by the specific
effect (km 40) shape infection outcome under the p–y model (4.7). Steady state

es (Kmin ¼ 0). Panel A, B show the dynamics without (km¼0) and with (km 40) an

pn decreases almost linearly until pn yields diminishing rates of immune activation.

persistence and a sustained immune response (pn ,yn40). With an Allee effect

be sensitive to parameter changes and initial pathogen densities and involves a

ree state near the transition (see Appendix D, Fig. D1 for details). Parameters: See

se xn ¼ 0:01kp , xy¼4.15�10�1. Initial conditions are pð0Þ ¼ 0:1, yð0Þ ¼ 0.



Fig. 6. The p-nullcline gpðpÞ � K�1
ðFðpÞÞ (4.9a) under the p–y model (4.7) is only

defined for p values where F(p) (4.10) falls within the range of Kð�Þ (i.e., between

Kmin and Kmax, shaded gray above). If baseline immune defenses are negligible

(km¼0, top curve), the domain of gp(p) is a single interval and the shape of gp(p)

reflects the shape of K(y) (cf. Fig. 7A). If km 40, the domain of gp(p) may include

two or more intervals (see the middle three curves). Over the lower interval(s)

gp(p) is typically increasing (see Fig. 7D), or may have a local minimum between

vertical asymptotes (see second highest curve here, and solid black curve in

Fig. 7B). Where gp(p) is defined, it is increasing (or decreasing) wherever F(p) is

increasing (or decreasing, respectively), since K�1
ð�Þ is strictly increasing on its

domain [Kmin, Kmax).
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response depends largely on the efficiency of the specific response
K(y) and whether or not an Allee effect is present.

To describe the immune-pathogen dynamics under Model
(4.7) first consider the case where baseline immune defenses
are negligible (km¼0, no Allee effect). In this case, there is always
exactly one pathogen persistence steady state ðpn40, yn40Þ that
is always stable. More generally it can be shown that stability is
guaranteed in this case whenever the activation rate of the
specific immune response (first term in Eq. (4.7b)), the quasi-
steady state of the non-specific immune response nð�Þ and the
efficiency of pathogen removal Kð�Þ are all increasing functions at
the equilibrium pn (see Appendix D for details). As shown in
Fig. 5A, this pn40 may correspond to a high or very low pathogen
density and requires a sustained immune response yn40.

To highlight two transitions related to pathogen clearance and
persistence, Fig. 5 shows how the steady state pathogen density
pn changes with increasing Kmax in the presence or absence of an
Allee effect. Increasing Kmax from near Kmin initially gives a near-
linear decrease in pathogen density pn. Eventually, pn is small
enough to decrease immune activation rates below their satura-
tion thresholds. Beyond this transition, immune activity (yn)
decreases but pathogen density pn changes little (see Fig. 5A,C).

The presence of an Allee effect (km40, Fig. 5B,D) introduces
the potential for a second, more abrupt transition (see Fig. 5D)
associated with a homoclinic bifurcation described in Appendix
D.2. Similar to Fig. 4E, increasing Kmax increases the Allee thresh-
old and decreases pn. Here, however, the basin of attraction for the
pathogen-free state (p¼0, y ¼ 0) can very suddenly grow to
encompass nearly all biologically plausible initial conditions.
Beyond this transition, the outcome of infection is complete
clearance of the pathogen following the acute phase of infection.

Importantly, whether the outcome of infection is clearance or
low-level persistence has major consequences for the host when
disease symptoms are immune mediated, or when the immune
response is otherwise costly (compare the two cases in Fig. 5).
Under such circumstances, immune-mediated disease symptoms
may increase host mortality risk or otherwise impact host fitness
during persistent infections despite very low pathogen levels.

To more precisely describe how these dynamics depend on
model parameters, consider the nullclines of Model (4.7)

gpðpÞ ¼ K�1

kpg 1�pð Þ�
km

mpþp

nðpÞ

0
BBB@

1
CCCA ð4:9aÞ

gyðpÞ ¼
1

my

ðnðpÞpÞa

xayþðnðpÞpÞ
a ð4:9bÞ

where K�1
ð�Þ is the inverse of K(y).

For kmZ0, the y-nullcline gy(p) is a monotone increasing
function of p (approximately sigmoidal) with maximum value
1=my. The shape of the p-nullcline gp(p) is more variable due to the
bounded nonlinear function K(y).

To see how different parameters shape the p-nullcline given by
Eq. (4.9a), define

FðpÞ ¼ kpgð1�pÞ�
km

mpþp

 !,
nðpÞ ð4:10Þ

so that the p-nullcline can be written as gpðpÞ ¼ K�1
ðFðpÞÞ. Since

K(y) is a nonlinear (sigmoidal) function with the finite range [Kmin,
Kmax), it follows that K�1

ð�Þ is also nonlinear and that gp(p) is only
defined for values of p where FðpÞA ½Kmin, Kmax). Fig. 6 illustrates
how this restricts the domain of gp(p) which for Kð�Þ given by
Eq. (4.8) results in a discontinuous p-nullcline defined on a
domain of one to three disconnected intervals.
Fig. 7 shows multiple instances of the p-nullcline (solid curves)
for a range of Kmax values. If baseline immune defenses are
negligible (km¼0), the p-nullcline (4.9a) is a decreasing function
with domain ðplo, phi�. If km¼0, then F(p) is linear. Therefore, plo is
determined by Kmax (i.e., plo decreases as Kmax is increased) and phi

is determined by Kmin (see the km¼0 curve, Fig. 6) for any strictly
increasing function Kð�Þ with range ðKmin, Kmax�. As shown in
Fig. 7A, the p-nullcline intercepts the p axis at phi and approaches
1 on the lower end of this domain as p decreases toward plo.

If km40 (see the four lower curves in Fig. 6 and see Fig. 7B,D)
the p-nullcline can be highly nonlinear which allows the p–y

model to have multiple equilibria associated with low pathogen
levels and instances of bi- and multi-stability including bistability
between the persistence steady state and the origin (see Fig. 7).
Some of these equilibria can undergo a Hopf bifurcation resulting
in low-level pathogen-immune cycling, although simulations
suggest cycling dynamics are rare or of small amplitude for
biologically relevant parameter values. In dynamical systems
terms, these new dynamics arise from transcritical bifurcations
involving the origin, from saddle-node bifurcations in the interior
of the positive quadrant, and from other bifurcations associated
with a homoclinic bifurcation near a generalized Hopf bifurcation
(see Appendix D).

These results suggest the following about the immune–patho-
gen dynamics under the simplified Models (4.7) and (3.1). First,
pathogens with higher growth rates kpg will have both higher
steady state pathogen density pn and result in more immune
activity yn. Second, low pathogen removal efficiency (e.g., reduced
K(y)) yields both higher pathogen load and elevated immune
activity. These results also highlight the synergistic nature of how
the vertebrate immune system responds to infection, and the
potential for nonintuitive dynamics to arise from even relatively
simple models of that response.

4.4. Determinants of host infectiousness and mortality risk

We would like to know which pathogen and host character-
istics most affect pathogen fitness (host infectiousness) and host
fitness (host mortality risk). Here fitness is defined by two



Fig. 7. Nullclines of the p–y model (4.7) illustrating the kinds of dynamics possible when km¼0 (panel A) and when km 40 (panels B–D). Multiple instances of the

p-nullcline (solid curves) are shown but only one instance of the y-nullcline (dashed curve). Gray curves indicate how the p-nullcline changes as Kmax is increased with the

solid black curve corresponding to the lowest value of Kmax and the dotted curve the highest. Note vertical asymptotes at some boundaries of the p-nullcline’s multi-

interval domain (see Fig. 6).
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important quantities. First, it is assumed that host infectiousness
is given by total pathogen load (pathogen fitness) over the
duration of the infection, given by

pðTÞ ¼
Z T

0
pðtÞ dt ð4:11Þ

where time T is when the host dies or recovers (although see
Lange and Ferguson, 2009; Holt and Barfield, 2006; Pepin et al.,
2010 for other possible measures of pathogen fitness). Second, to
quantify host survival, host death is modeled as a random
process. In house finches, host mortality risk increases with
disease symptoms that result from tissue damage and inflamma-
tion caused by the interaction between host immune components
and pathogen (Faustino et al., 2004; Hochachka and Dhondt,
2000). Therefore the time an infected host dies is defined as the
random variable Tdeath, given by

PðTdeathrTÞ ¼ exp �

Z T

0
lðtÞ dt

� �
ð4:12Þ

where the mortality rate lðtÞ � cUðtÞ is assumed to be some
function of the pathogen load p, non-specific response n and
specific response y (thus Uðp,n,yÞ is a proxy for how disease
symptoms affect survival) times a scaling constant c. The effect of
disease on host fitness is quantified by the probability of surviving
to day T¼40, given by

Ps � 1�PðTdeathr40Þ ð4:13Þ

To identify which pathogen and host characteristics most
strongly influence the two fitness quantities pðTÞ and Ps, a
sensitivity analysis is used to determine how each changes with
changing parameter values. Here the (relative) sensitivity of
quantity R to changes in parameter q is

SqðRÞ ¼
@R

@q

1=R

1=q
ð4:14Þ

Since the duration of infection T (time to host recovery or death)
is highly variable, these parameter sensitivities for pðTÞ are shown
as curves over a range of T values, or sensitivity profiles with
respect to T. In the case of Ps, parameter c is largely unknown
however it has no effect on the parameter ranks as determined by
their respective relative sensitivies (as shown below in this
section). These sensitivities are therefore computed for a con-
venient value of c then normalized to compare across different
cases of lðtÞ.

Fig. 8 shows pathogen fitness sensitivities for two instances of
Model (3.1). The comparison between parameter sensitivities
before and after control by the specific immune response
(T � 15 in Fig. 8C) suggests that whether or not individual
pathogen characteristics are likely to respond to selection
depends on whether transmission typically occurs before or after
the specific immune response. If the host dies or otherwise ceases
to be infectious prior to the specific response, pathogen fitness is
most sensitive to changes in the pathogen’s intrinsic growth rate
kpg, the loss rate of non-specific immune components mn and the
effectiveness of the non-specific immune response in removing
pathogen Kmin. Otherwise, if sufficiently many new infections
arise from infectious hosts with active specific immune responses,
selection may act on additional pathogen characteristics that
affect the activation rate of the specific response or its effective-
ness in removing pathogen.

To identify the host and pathogen characteristics that influ-
ence host survival, let us consider the relative sensitivity of host
survival Ps (4.13) to changes in parameters over a range of
virulence scalar values, c, and for multiple possible forms of



Fig. 8. Sensitivity profiles for Model (3.1) showing how pathogen fitness (total pathogen load pðTÞ (4.11)) responds to small changes in the parameter values in Table 1

with Kmin ¼ 0:0012. Sensitivities are shown for a range of times T, as total pathogen load depends on the duration of infection which may be shortened by host death. Panel

A shows pathogen dynamics for an acute infection (Kmax ¼ 0:0075) and a persistent infection (Kmax ¼ 0:00156). Panel B shows the total pathogen load for each case. The

curves in C, D are relative sensitivities for each parameter, computed over a range of T values (see text). Here n indicates parameters with sensitivities near 0. The primary

determinants of infectiousness in this case are related to the pathogen growth rate and the timing and strength of the specific and non-specific immune responses.

Parameters used: kpg, km, mp, Kmin, Kmax, a, x, xy, kp, xn, mn , y, my0
, and my .
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UðtÞ �UðpðtÞ,nðtÞ,yðtÞÞ. This provides some much desired flexibility
in defining lðtÞ since in this host–pathogen system the exact
mechanisms by which the immune–pathogen interaction yields
disease symptoms are not well understood. Moreover, attempts
to define lðtÞ by explicitly modeling symptoms (not shown) yields
qualitatively similar results to those presented here. Note from
Eqs. (4.12), (4.14) and the definition of lðtÞ ¼ cUðtÞ that if U is
linear in a given set of quantities (e.g., p and n), then these relative
sensitivities are also linear functions of those quantities since, for
any parameter q

SqðPsÞ ¼�cq
@

@q

Z T

0
UðtÞ dt

� �
: ð4:15Þ

Fig. 9A shows the pathogen removal rate KðyÞnp as an example
proxy for symptoms. Other more biologically plausible proxies
include defining mortality risk l as some linear combination of n,
p and np. As alluded to earlier in this section, Eq. (4.15) implies
that the parameter ranks—as determined by their corresponding
sensitivities—are independent of c. It therefore suffices to con-
sider these parameter ranks assuming lðtÞ is proportional to each
of these terms individually, for the two instances of Model (3.1)
shown in Fig. 8A. Fig. 9B shows the associated survival probabil-
ities Ps scale with c exponentially, as expected. Figs. 9C and D
show relative sensitivities associated with each of these possible
terms used to define lðtÞ. Because SqðPsÞ is linear if lðtÞ is linear,
one can write the sensitivities for any such lðtÞ as a linear
combination of these values. These results all suggest that host
characteristics affecting the timing and strength of the immune
response (i.e., mn, x, Kmax, Kmin, my and my0) may respond to
disease-induced selection as would host characteristics that affect
the pathogen growth rate kpg.

From the perspective of the pathogen, the immune–pathogen
dynamics lead to a natural transmission-virulence tradeoff as
illustrated in Fig. 10. Assuming variation only in the pathogen
growth rate kpg and using the ‘‘acute’’ immune–pathogen
dynamics shown in Figs. 8 and 9, the average relationship between
transmission and virulence can be computed as shown in Fig. 10.

These results highlight two key aspects of this system. For host
and pathogen, the evolutionary consequences of transmission-
mediated and/or host-mortality-mediated selection may depend
heavily on whether transmission and mortality typically occur
before or after the action of the specific immune response
(cf. Osnas and Dobson, 2010). This fact likely applies to other
persistent or chronic diseases beyond those caused by mycoplas-
mas. Second, any symptoms-driven selective forces acting on the
host could affect both the effectiveness and the timing of the
specific immune response as well as the effectiveness of the non-
specific response. Since host symptoms are at least partially
driven by host immune activity, the direction of selection on host
immune characteristics will likely be determined by their net
impact on survival.
5. Discussion

One goal of this investigation is to identify which host and
pathogen characteristics contribute most to within and between
host species variation in disease progression using a simple model
of the pathogen–immune interaction. This model exhibits four
qualitatively different outcomes of infection with respect to
pathogen dynamics: (1) no pathogen proliferation due to effective
baseline immune defenses or a relatively low pathogen growth rate,
(2) a brief increase in pathogen density allowed by ineffective
baseline defenses then clearance by the non-specific immune
response, (3) a more prolonged period of pathogen proliferation
(resulting from an ineffective non-specific response) that is even-
tually cleared by the specific immune response, and (4) long-term
pathogen persistence despite a sustained specific immune response.



Fig. 9. Sensitivities for the probability of surviving to day 40, Ps , under Model (3.1) showing how host survival responds to small changes in parameter values for the same

two cases used in Fig. 8A. Panel A shows one measure of immune-pathogen activity (pathogen removal rate KðyÞnp). Another more general proxy for symptom severity is to

define lðtÞ as a linear combination of p, n and np, as mentioned in the text. Panel B shows how Ps depends on scaling constant c where lðtÞ ¼ cKðyÞnp. Panels C and D show

approximate parameter sensitivities that have been normalized for each choice of lðtÞ and plotted as sorted stacked barplots since these normalized relative sensitivities

are independant of c (see text). Any choice of lðtÞ that is a linear combination of these quantities will yield sensitivities that are a linear combination of the normalized

sensitivities shown, as detailed in the text. Parameters with sensitivities that are approximately 0 are not labeled. Parameters used: kpg, km, mp , Kmin, Kmax, a, x, xy, kp, xn, mn ,

y, my0
, and my .

Fig. 10. Transmission–virulence relationships arising from variation in the pathogen growth rate kpg, using different proxies for disease-related mortality risk lðtÞ as

described in Fig. 9 and the text. These positive relationships indicates the existence of a transmission-virulence tradeoff for the pathogen. Here kpg increases from 10% to

10-times of the value given in Table 1. For each value of kpg, the distribution given by Eq. (4.12) was used to compute EðpðTÞÞ and Ps (see Fig. 9 and the text). Parameter c

was chosen to yield Ps ¼ 60% for the value of kpg given in Table 1.
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These results suggest that key determinants of these different
infection outcomes include the pathogen growth rate (kpg) relative
to the host’s baseline immune defenses, the ability of non-specific
and specific immune components to remove pathogen, and other
host characteristics affecting the activation and maintenance of
various immune components.

Fig. 11 compares the data shown in Fig. 1 with model output
generated by varying three parameters that most affect pathogen
load early during infection (see Appendix E for similar figures
using other parameters). This suggests that much of the variation
between infections in house finches likely results from non-
specific immune components (e.g., macrophages) that are var-
iously unable to control M. gallisepticum (MG) infections, and
perhaps from a delayed or mildly inefficient specific immune
response. Importantly, variation in the timing of the specific
immune response could also be caused by non-specific immune
components involved in activating and regulating the specific
immune response. Another important source of variation
between species is the pathogen growth rate, which may be
species-specific, may differ between strains of MG, and may be
influenced by environmental mediators such as temperature. The
role of the non-specific immune response in this model is
consistent with what is known about other mycoplasma diseases,
suggesting that the results presented here may also apply to other
host–pathogen systems, not just MG in the house finch. For
example, the house sparrow (Passer domesticus) is know to have
a strong non-specific immune response compared to related
species (Lee et al., 2005; Lee, 2006; Martin et al., 2004) and clears
MG infections rapidly (Dhondt, 2008).

In the model presented here tacitly assumes that different
infection outcomes arise from differing host and/or pathogen
characteristics. Another interpretation of these results is sug-
gested by how MG and other mycoplasma species interact with
their hosts. The outcome of MG infection can be influenced by the
Fig. 11. Comparison between empirically observed pathogen load variation (panel A,

variation in pathogen (B) or host (C,D) characteristics. The pattern of variation in the dat

the pattern arising from pathogen growth rate variation (B). This is consistent with ho

these comparisons suggests that the bulk of the observed variation involves the hosts’ n

value given in Table 1, with Kmin ¼ 1:2� 10�3, Kmax ¼ 2:25� 10�2, my0 ¼ 1:5� 10�3 (to b

200 for plotting model output on the same log-scale as the data. See Fig. E1 in Append
nature of the initial contact with pathogen (e.g., Dhondt, 2007b).
Some mycoplasmas are known to actively manipulate the host
immune response, making it more ineffective and harmful to the
host (Citti et al., 2005; Simecka, 2005). Accordingly, an alternative
to interpreting different model parameterizations as fixed
individual- or species-level characteristics is to view them as
characteristics of a single infection that arise from a multitude of
factors including the host’s attempt to mount an effective specific
immune response and the pathogen’s attempt to manipulate
that response. Future work comparing the results presented here
with models that include more detailed immune regulatory
mechanisms may suggest experimental means of determining
whether or not immune manipulation plays an important role in
these systems.

A second goal of this investigation is to identify pathogen and
host immune characteristics likely to affect host infectiousness
(pathogen fitness) and mortality risk (host fitness) to help
inform the empirical study of virulence evolution in this system.
According to the sensitivity profiles shown in Fig. 8, the nature
of the selective forces acting on the pathogen depends strongly
on whether transmission occurs before or after the specific
immune response. Assuming transmission typically occurs early
during infections, the characteristics that likely drive pathogen
fitness are the pathogen growth rate kpg and any ability of the
pathogen to manipulate the non-specific immune response
(i.e., to reduce Kmin and Kmax). A more complete picture of how
host fitness is affected by immune status and pathogen load is
needed to give reliable predictions regarding selection on host
characteristics. However, if host fitness depends on total
immune activity as detailed in Section 4.4, one would expect
selection to act on characteristics associated with an early and
efficient immune response (i.e., non-specific immune compo-
nents) and immune-driven disease symptoms (e.g., inflammatory
mediators).
from Fig. 1D), and pathogen load variation under Model (3.1) arising from either

a (A) appears more similar to some patterns of host variation (e.g., C) than it does to

st heterogeneity being an important source of variation in this system. Moreover,

on-specific immune response. Each parameter shown varies from 5% to 700% of the

etter match the timing of the specific response) and pathogen density p scaled by

ix E for similar figures where other parameters are varied.
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This work suggests that certain molecular and cellular level data
should help clarify the relationships between mycoplasma, host
epithelial tissues, host immune cells and the symptoms associated
with MG infection in house finches. Specifically, data from cytokine
assays, immune manipulation experiments and data obtained from
tissue cultures are likely to shed light on the regulation of various
immune components and inflammation, and how MG affects these
regulatory processes in avian hosts. Similar data are also needed to
establish whether disease symptoms (i.e., tissue inflammation)
affect pathogen replication rates and longevity, as such feedbacks
might affect the results obtained under Model (3.1). Using mechan-
istic models such as these to incorporate molecular-, cellular- and
organism-level data should clarify our understanding of the complex
interactions between mycoplasmas and their hosts.
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Appendix A. Scaling the model

The unscaled model is based upon the house finch immune
response to MG as described in the text. The resulting non-specific
Table A1
Parameter values of the unscaled model. Time units are hours. Parameters that differ fro

interpretation, basic cellular biology of mycoplasmas or to yield biologically plausible

Parameter Value Range Description

kpg 0.10 o2:44 Pathogen growth rate (Reynolds et al., 2006; F

p1 2�107
o1� 109 Maximum pathogen density (Reynolds et al., 2

kpm 0.6 – Maximum removal by local innate component

sm 0.005 r0:005 Influx of local innate components; likely no fa

kmp 0.01 – Maximum removal by local innate component

mm 0.002 0.0013–0.0048 Decay rate of local innate components (Reyno

kpn0 0 kpn0 okpnmax Kð0Þ; Pathogen removal rate by active innate c

kpnmax
1.8 2.5 Maximum pathogen removal rate (Reynolds e

xny 1 – Half-saturation constant for K(Y)

c 0.75 0–1 Anti-inflammatory mediator effect (held const

snr 0.08 – Recruitment of innate components (e.g. phago

knp 0.1 – Pathogen activation of the innate response (Re

knn 0.01 r0:1 Positive feedback in the activation of the inna

mnr 0.12 0.069–0.12 Decay rate of baseline innate components (Re

mn 0.05 mn omnr Decay rate of activated innate components (Re

kynp 0.005 – Maximum activation rate of specific immune

y 6 Z1 Determines steepness of sigmoidal response K

a 6 Z1 Determines steepness of sigmoidal N-activatio

xnp 10 – Specific component half-saturation constant fo

my0 0.0037 0.003–0.006 Activation rate of specific components; based

my 0.0016 0.001–0.002 Decay rate of specific components; based on a
immune model subsystem parallels the non-specific immune
model subsystem described in (Reynolds et al., 2006). Therefore
the model presented here builds upon that work which is here
extended it to include the specific immune response to MG. The
unscaled model is given by

dP

dt
¼ kpgP 1�

P

p1

� �
�

kpmsmP

mmþkmpP
�KðYÞcNP ðA:1aÞ

dN

dt
¼

snrc knnNþknpP
� �

mnrþc knnNþknpP
� ��mnN ðA:1bÞ

dY0

dt
¼

kynpðcNPÞa

xanpþðcNPÞa
�my0Y0 ðA:1cÞ

dY

dt
¼ my0Y0�myY ðA:1dÞ

where KðYÞ ¼ kpn0þðkpnmax�kpn0ÞY
y=xynyþYy

� �
. Model (3.1) in the

text is obtained by making the following transformation:
p¼ P=p1, n¼N=snr , y0 ¼ Y0=kynp, y¼ Y=kynp, kpg ¼ kpg , km ¼ kpm

sm=ðkmpp1Þ, mp ¼ mm=ðkmpp1Þ, Kmin ¼ csnrkny0, Kmax ¼ csnrknpmax
,

y¼ y, x¼ xny=kynp, xy ¼ xnp=ðcsnrp1Þ, kp ¼ knpp1=ðknnsnrÞ, xn ¼ mnr=

ðcknnsnrÞ, mn ¼ mn, a¼ a, my0 ¼ my0, my ¼ my and time t¼t.

A.1. Changes from the model in Reynolds et al. (2006)
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The constant kpn is replaced by the function KpnðYaÞ. According
to Blanchard and Browning (2005, p. 490) in some species of
mycoplasma antibodies are necessary for phagocytosis by
innate immune components (e.g. macrophages) so we assume
the efficiency of pathogen removal kpn is instead a function of
specific immune activity Y and is relatively low without
assistance from the specific immune system (at low Y).
2.
 The anti-inflammatory mediators CA modeled in Reynolds
et al. (2006) are here assumed to be constant, and have
been combined with parameter c1 into the single parameter
c¼ 1=1þðCa=c1Þ

2.

3.
 To model maturing and active specific immune components

(e.g. B- or T-cells, antibodies, etc.) two new state variables
were introduced: Y0 and Y, respectively. Assuming activation
and maturation occur in response to antigen presentation by
able 1 of Reynolds et al. (2006) were assigned values based on their biological

amics.
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macrophages the activation rate of the maturing components
Y0 is assumed to be an increasing function of both P and N,
with the presence of pathogen and an activated specific
immune response required for activation.
Other possibilities for the first term in Eq. (3.1)c include (1) to
assume that antigen presentation is more directly related to N

levels and that it saturates at low antigen levels (low P), e.g.
kynpPa=xanpþPaN; or (2) to assume that it depends on the
amount of antigen processed by N, i.e. that the activation rate
is proportional to the net rate of pathogen loss KðYÞNP.
4.
 Setting knd ¼ 0 decouples the feedback of damage D to activate
innate components (N) by assuming it is negligible w.r.t. the
pathogen and self-activation. This assumption removes D from
the system simplifying the model mathematically, and it is
biologically reasonable as typically M. gallisepticum does not
seem to lead to self-sustained inflammation.
Appendix B. Simplifying Model (3.1)

The simplified models in the text were derived based on the
existence of multiple timescales in the full model and the role
certain terms played in driving the dynamics under specific
circumstances as explained in the text. Additional details regard-
ing these simplified models are as follows:
1.
 We assume the p–n subsystem is fast relative to the y0–y

dynamics, and that the n dynamics are fast relative to the p

dynamics. In the limit where n tracks p instantaneously, n will
approximately satisfy dn=dt¼ 0. Solving for n as a function of
p, n(p) is one of the two non-zero roots of dn=dt,

n7 ðpÞ ¼
1

2

1

mn

�xn�kpp

� �
7

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mn

�xn�kpp

� �2

þ4
1

mn

kpp

s
:

ðB:1Þ

Requiring nðpÞ40 when p40 and that nð0Þ ¼ 0 implies that
we only need consider the case where nðpÞ ¼ nþ ðpÞ, and define

nðpÞ ¼
1

2

1

mn

�xn�kpp

� �
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mn

�xn�kpp

� �2

þ4
1

mn

kpp

s
: ðB:2Þ
2.
 Further simplifications can be made by assuming more direct
activation of the adaptive/specific immune response (in the
context of mean-field equations, this essentially assumes an
exponentially distributed time to activation instead of a
gamma distributed delay). This model has a single adaptive
immune response variable y replacing Eqs. (A.1c) and (A.1d)
with the single equation

dy

dt
¼
ðnpÞa

xayþðnpÞa
�myy:

This system has the same equilibrium conditions as Model
(3.1), but may yield different stability conditions.
3.
 For parameter values near those given in Table A1, additional
simplifications can be made by dropping certain terms from
Eq. (3.1) since the model terms are approximately

dp

dt
¼ 0:1pð1�pÞ�

1:5 � 10�8p

1 � 10�8
þp
�

0:1086y6

2006
þy6

 !
np ðB:3aÞ

dn

dt
¼

nþ2:5 � 109p

199þnþ2:5 � 109p
�0:05n ðB:3bÞ

dy0

dt
¼

ðnpÞ6

8:29 � 10�36
þðnpÞ6

�0:0037y0 ðB:3cÞ
dy

dt
¼ 0:0037y0�0:0016y ðB:3dÞ

and

nðpÞ ¼ 1
2ð�179�2:5 � 109pÞ

þ1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�179�2:5 � 109pÞ2þ2 � 1011p

q
: ðB:4Þ

This suggests the following simplifications. The activation of
the innate response is primarily driven by pathogen load p, as
kpb1. Omitting n from the dn=dt equation leaves

dn

dt
¼

p
xn

kp
þp
�mnn ðB:5Þ

reducing n(p) to

nðpÞ ¼
1

mn

p
xn

kp
þp

: ðB:6Þ

Combining the above simplifications yields the simplified p–y

model (4.7) which approximates the slow time scale dynamics of
model (3.1).
Appendix C. Fast p–n model dynamics

Because different processes in Model (3.1) occur over a broad
range of time scales, we can analyze the model dynamics using
standard separation of time scales techniques. We first consider
the dynamics without an active immune response, then consider
the ‘‘fast’’ time scale dynamics given by the p–n model. Results
similar to those in AppendicesC.1 and C.2 below were previously
discussed in Reynolds et al. (2006) for a very similar model.

C.1. Pathogen dynamics without an immune response

Holding the specific and non-specific immune response con-
stant (n¼0), the pathogen dynamics follow

dp

dt
¼ kpgp 1�pð Þ�

kmp

mpþp
ðC:1Þ

where the second term captures the host’s baseline immune
defenses as detailed in the text.

Eq. (C.1) can have one to three equilibria

po ¼ 0 ðC:2aÞ

pcrit ¼
1

2
ð1�mpÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmpÞ

2
�

4

kpg
km

s !
ðC:2bÞ

pmax ¼
1

2
ð1�mpÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmpÞ

2
�

4

kpg
km

s !
ðC:2cÞ

corresponding, respectively, to a state of health (stable when
r0o0; see text), an unstable equilibrium and threshold for the
Allee effect (unstable when pcrit positive; same as r0o0) and an
equilibrium state of pathogen persistence (stable when ps exists
in ð0;1�).

C.2. Dynamics of the p–n subsystem

Next we consider the dynamics of the ‘‘fast’’ Model (4.3),
where the (‘‘slow’’ time scale) specific immune dynamics are
treated as constant. The equilibria for Eq. (4.3) are

ðpo,noÞ ¼ ð0;0Þ ðC:3aÞ
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ðpn,nnÞ ¼ 0,
1

mn

�xn

� �
ðC:3bÞ

ðpn,nnÞ, pn, nn40 ðC:3cÞ

which correspond to a state of health ((C.3a), the origin), a self-
sustaining immune response that can persist in the absence of
pathogen (C.3b) and one or more equilibria with positive patho-
gen density (pn) and immune activity (nn). Typically there are only
one (e.g. km¼0) or two interior equilibria (although see figure 4).
In rare cases, there can be three interior equilibria, two of which
arise at relatively low pathogen densities via a saddle-node
bifurcation, resulting in bistability. Ranking the three equilibria
by pathogen density, the middle equilibrium acts like an Allee
threshold (an unstable equilibrium) resulting in bistability
between the upper steady state and a lower steady state (or limit
cycle) instead of bistability with the origin.

Stability criteria for these equilibria are as follows. The healthy
state (C.3a) is locally stable when r0o0 and when the host
immune response is not self-sustaining nno0, where r0 and nn

are given by Eqs. (4.2) and (C.3b), respectively. The state of
pathogen-free persistent inflammation (C.3b) is caused by the
positive feedback in the non-specific immune response (n), and is
locally stable whenever nn40 and pathogen cannot invade that
state r0oKnynn.

Stability criteria for interior equilibria (C.3c) and criteria for an
Allee effect are best summarized by considering the nullclines of
Model (4.3) given by dp=dt¼ 0 and dn=dt¼ 0. The p- and n-
nullclines are, respectively

nðpÞ ¼

kpgð1�pÞ�
km

mpþp

 !

Kny
, p¼ 0 ðC:4aÞ

pðnÞ ¼
n

kp

xn

1

mn

�n

�1

0
BB@

1
CCA ðC:4bÞ

For clarification, the p and n nullclines can be regarded as
being restricted to the positive quadrant of the p–n plane with p

on the horizontal axis and n on the vertical axis, as shown in
Fig. 4. We can rewrite the nullclines Appendix (C.4) as functions
of p when restricted to the positive quadrant.

f pðpÞ ¼

kpgð1�pÞ�
km

mpþp

 !

Kny
, p¼ 0 ðC:5aÞ

f nðpÞ ¼
1

2
ðnn�kppÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnn�kppÞ2þ

4kp

mn

p

s !
ðC:5bÞ

The simpler of the two (fn(p), the n-nullcline) is described first.
This curve is concave down and either increases from the origin or
(p¼0, n¼ nn) toward n-mn with increasing p (see solid curve in
Fig. 4).

If km¼0 the p-nullcline is simply a decreasing line intersecting
the axes at (p¼0, n¼ kpg=Kny) and (p¼1, n¼0). If km40, the
second term in (C.4a) introduces a vertical asymptote at p¼�mp.
This makes the p-nullcline concave down and it intersects the
p-axis twice: it increases through the p-axis somewhere above
p¼�mp and decreases across the p-axis between 1�mp and 1.
These two roots are given by

p7 ¼
1

2
ð1�mpÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmpÞ

2
�

4

kpg
km

s !
ðC:6Þ
The lower root is positive only if km=mp4kpg (i.e. when Model
(4.1) shows bistability). When (C.4a) is unimodal over the domain
ð0;1Þ, the peak occurs at p¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km=kpg

p
�mp.

Having described these two nullclines in detail, we may now
consider the stability criteria of interior equilibrium points.

C.2.1. Stability of Interior Equilibria of (4.3)

On the positive quadrant of the p–n plane under Model (4.3),
denote the p-nullcline by fp(p) and the n-nullcline by fn(p)
according to Eqs. (C.5). Assume these curves intersect to yield
an equilibrium point (pn, nn). Stability of this equilibrium is
determined by the sign of the Jacobian’s trace and determinant
at this point, where

signð�TrÞ ¼ sign �pKnyf 0pðpÞþ
d

dp

dn

dt

	 

1

f 0nðpÞ

� �
ðp,nÞ ¼ ðpn ,nnÞ

ðC:7aÞ

signðDetÞ ¼ signðf 0nðpÞ�f 0pðpÞÞðp,nÞ ¼ ðpn ,nnÞ
ðC:7bÞ

The stability conditions for (pn, nn) can be summarized as

f 0pðpÞomin f 0nðpÞ,
d

dp

dn

dt

	 

1

pKnyf 0nðpÞ

 !
ðp,nÞ ¼ ðpn ,nnÞ

ðC:8Þ

where loss of stability via a Hopf bifurcation results in

d

dp

dn

dt

	 
� �
ðpn ,nnÞ

pnKnyf 0nðpnÞ
o f 0pðpnÞo f 0nðpnÞ ðC:9Þ

Limited numerical investigation suggests cycling dynamics in
the fast p–n subsystem are rare and of small amplitude for
biologically relevant parameter values.

These criteria have the following implications:
1.
 Here, both f 0nðpÞ40 and d=dp dn=dt
� �

40 hold. This implies
that Hopf bifurcations require both nullclines be increasing
functions of p.
2.
 If the p-nullcline is a strictly decreasing function on all of
pAð0;1Þ—e.g. if km � 0—there can be no stable limit cycle
oscillations. Therefore in this case a necessary (but not
sufficient) requirement for cycling is that (i.e., kmZkpgm2

p).

C.3. Simplified p–n model dynamics

In the text we simplify the p–n model (4.3) by omitting
positive feedback in the activation rate of n. This yields the new
form of dn=dt given by Eq. (4.4). Here we detail the dynamics of
this simplified p–n model.

First, we rewrite the model equations in terms of their nullclines

dp

dt
¼ ðf pðpÞ�nÞKnyp ðC:10aÞ

dn

dt
¼ ðf nðpÞ�nÞmn ðC:10bÞ

where the p-nullcline (for p40) is fp(p) (C.5a) and the n-nullcline is
f nðpÞ � nðpÞ (4.5).

The stability of the origin under this model is as stated in the
text, with r040 required for pathogen invasion. Linearizing this
system about any equilibrium with pn40, nn40 yields a Jacobian
matrix with trace and determinant

�Tr¼�pnKnyf 0pðpnÞþmn ðC:11aÞ

Det¼ mnKnypnðf
0
nðpnÞ�f 0pðpnÞÞ: ðC:11bÞ

This equilibrium is stable when these two quantities are positive
with loss of stability via a Hopf bifurcation when Tr increases
through 0.



Fig. C1. Dynamics of Model (4.6) which approximate the simplified p–n subsystem when n-dynamics are fast.
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C.4. Pathogen dynamics with fast n

Assuming a fast non-specific response (n) under the simplified
p–n model given by Equations (4.3a) and (4.4), we can approx-
imate that subsystem with the single equation (4.6). Relative to
the simplified p–n model, the dynamics of (4.6) can be summar-
ized as follows (see Fig. C1).

The equilibria of the simplified p–n model satisfy dp=dt¼ 0 and
dn=dt¼ 0, and therefore those equilibrium pathogen densities are
exactly the equilibria of the one dimensional model (4.6). Writing
Eq. (4.6) using the p and n nullclines in the previous section

dp

dt
¼ ðf pðpÞ�f nðpÞÞKnyp: ðC:12Þ

Linearizing about an equilibrium point pn40 gives the stabi-
lity condition

f 0nðpnÞ�f 0pðpnÞ40: ðC:13Þ

Recalling stability conditions (C.11), it follows that if pn,nn40 is
stable under the simplified p–n model then pn is necessarily a
stable equilibrium of the one dimensional model (4.6). Likewise,
unstable equilibria associated with stable limit cycles will be
stable under Model (4.6) so long as (C.11b) remains positive.
Appendix D. Slow p–y model dynamics

We here rewrite the p–y model equations (4.7) in a more
general form

dp

dt
¼ kpgð1�pÞ�

km

mpþp
�KðyÞnðpÞ

 !
p ðD:1aÞ

dy

dt
¼ GðpÞ�myy: ðD:1bÞ

where G(p) is the specific immune activation rate, GðpÞ ¼ ðnðpÞpÞa=
ððnðpÞpÞaþxay Þ. More generally the results below hold for other
choices of G where Gð0Þ ¼ G0ð0Þ ¼ 0, G0ðpÞZ0 and GðpÞrGmax.
The equilibria of the p–y model (4.7) are only the origin (the
healthy state) and the intersections of the nullclines (4.9) in the
interior of the positive quadrant, since nð0Þ ¼ 0 (i.e. there is no
self-sustaining inflammatory response). Stability conditions for
these equilibria are as follows:

The origin has eigenvalues l1 ¼ r0 and l2 ¼�my, where r0 is
given by (4.2) and hence local stability is determined by whether
r0 is greater or less than 0.

Stability of the interior equilibria can be considered first under
the simple case where km¼0. An interior equilibrium point is
stable when the Jacobian’s determinant is positive and its trace
negative. For Model (D.1),

�TrðJÞ ¼ myþðkpgþKðyÞn0ðpÞÞp ðD:2aÞ

DetðJÞ ¼ ððkpgþKðyÞn0ðpÞÞmyþK 0ðyÞnðpÞG0ðpÞÞp: ðD:2bÞ

Recalling that nðpÞ, K(y) and G(p) are each increasing functions,
stability is ensured as both of the quantities above are positive for
any equilibrium quantities p, y40.

More generally, if km40 then

�TrðJÞ ¼ myþ kpgþKðyÞn0ðpÞ�
km

ðmpþpÞ2

 !
p ðD:3aÞ

DetðJÞ ¼ kpgþKðyÞn0ðpÞ�
km

ðmpþpÞ2

 !
myþK 0ðyÞnðpÞG0ðpÞ

 !
p

ðD:3bÞ

Here stability can be lost if either of these two quantities becomes
negative. The loss of stability via a Hopf bifurcation occurs when
(D.3a) passes through 0. Computational results suggest that
cycling dynamics only occur rarely and with small amplitudes
for parameter values relevant to this particular biological applica-
tion. They occur during instances of bi- or multi-stability and
typically have small basins of attraction. That said, they may have
some relevance to the loss of low-level pathogen persistence via
stochastic extinction.
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D.1. Nullclines of the p–y model

The nullclines of the p–y model (D.1a,b) for positive values p

and y are

gpðpÞ ¼ K�1

kpgð1�pÞ�
km

mpþp

nðpÞ

0
BBB@

1
CCCA ðD:4aÞ

gyðpÞ ¼
GðpÞ

my

ðD:4bÞ

For the case of G(p) considered in the text, the y-nullcline (4.9b) is
a strictly increasing function of p, increasing from the origin and
asymptotically approaching the saturating value y¼ m�1

y . The
y-nullcline reaches half that maximum value when p¼ p1=2
Fig. D1. Details of the transition indicated by the arrow in Fig. 5B for the p–y model (4.7

for clarification and to show the unstable saddle (empty circle in the inset) that is s

transition can be understood as the result of a saddle homoclinic bifurcation near a gen
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defined by nðp1=2Þp1=2 ¼ xy (see Eq. (4.9b)) and given explicitly by
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Recall from the full Model (3.1) that the activation rates of the
innate (n) and specific (y0) immune responses (see the first terms

in (3.1b,c)) reach half of their maximum value when p¼ xn=kp and

p¼ xy, respectively. If the innate response reaches a maximum

activity level at relatively small p (i.e. kp=xnb1), then nðpÞ is

approximately its upper limit of 1=mp for most pAð0;1Þ. If

xn=kp5xymn, then p1=2 � xymn. If xn=kpbxymn then p1=2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xympxn=kp

q
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mpty circle in the insets). Panel A: Starting at low Kmax, infections lead to a state of

ary between basins of attraction bends away from the y axis increasing the origin’s

ergoes a Hopf bifurcation resulting in cycling dynamics at low pathogen density, as

he stable and unstable manifolds of the saddle connect as shown in the inset. This

persistence. Panel D: Beyond this bifurcation, nearly all biologically meaningful

e infection resolved by the host immune response. See text for additional details.
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Letting FðpÞ ¼ ðkpgð1�pÞ�km=mpþpÞ=nðpÞ, the slope of the null-
clines (D.4) at an equilibrium point ðpn,ynÞ are, respectively

g0pðpnÞ ¼ K�10
ðFðpnÞÞF

0
ðpnÞ ðD:6aÞ

gy
0ðpnÞ ¼

G0ðpnÞ

my

ðD:6bÞ

where the signs of K�10
ð�Þ and G0ð�Þ are positive and the sign of F 0ð�Þ

may be positive or negative, since at any positive valued equili-
brium point (p,y)

F 0ðpÞ ¼� kpgþKðyÞn0ðpÞ�
km

ðmpþpÞ2

 !
1

nðpÞ
:

To relate the slope of the nullclines to the stability criteria
(D.3), a little calculus gives that K�1 0

ðFðpnÞÞ ¼ 1=K 0ðynÞ and hence
g0pðpnÞ ¼ F 0ðpnÞ=K 0ðynÞ. Together with (D.6a) this yields the general
(kmZ0) stability criteria

�TrðJÞ ¼ my�g0pðpnÞK
0
ðynÞnðpnÞpn ðD:7aÞ

DetðJÞ ¼ ðgy
0ðpnÞ�g0pðpnÞÞK

0
ðynÞnðpnÞpnmy ðD:7bÞ

Since the p-nullcline increases and decreases where F(p) increases
and decreases, respectively, the Hopf condition (D.7a) shows that
the only equilibria that can undergo a Hopf bifurcation are those
that occur where the p-nullcline is increasing with a large enough
slope s.t. g0pðpnÞ4my=K 0ðynÞnðpnÞpn.
Fig. E1. Pathogen load variation under
D.2. The transition from persistence to clearance

The bifurcations involved in the transition from low-level
pathogen persistence to pathogen clearance indicated with an
arrow in Fig. (5) are illustrated in Fig. D1B where Kmax is increased
through a very narrow region of parameter space. To better
illustrate key details, insets are included in Fig. D1 that contain
topologically equivalent illustrations of the dynamics. We are
particularly interested in initial conditions that correspond to a
newly infected naive host, i.e. initial conditions that lie along the
p-axis with very low pathogen density.

Preceding the transition (low Kmax, see Fig. D1A), the basin of
attraction for the persistence steady state (shaded gray) is large
while the basin of attraction for the healthy state (shaded white)
is a very small region near p� 0. As show in the inset, there is a
saddle equilibrium near the origin whose stable manifold forms
the boundary between initial conditions that lead to the origin or
to ðpn,nnÞ. Increasing Kmax very near the transition zone (see
Fig. D1B), it is also possible (though not necessary) for the
persistence steady state to undergo a supercritical Hopf bifurca-
tion resulting in pathogen–immune cycles. Next there is an
abrupt change in the two basins of attraction that appear to
result from a homoclinic bifurcation (Fig. D1C). As Kmax increases
through this bifurcation, the arm of stable manifold (dark gray
curve) separating the two regions lifts off of the y axis (Fig. D1A to
B) and wraps around a neighborhood of the persistence steady
state (or cycle) eventually intersecting the p axis. Continuing, this
Model (3.1). See Fig. 11 for details.
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motion, it eventually intersects the unstable manifold of the
saddle and forms a homoclinic orbit like the one shown in the
Fig. D1C inset. Beyond this point, an unstable limit cycle is born
from the homoclinic bifurcation and the stable manifold now
spirals backwards onto this cycle leaving the interior of that cycle
as the basin of attraction for disease persistence (either cycling or
at steady state). Note that now all initial conditions of the form
ðp40,y¼ 0Þ yield either no infection (p� 0) or an acute infection
resolved by the specific immune response. Increasing Kmax

further, the region yielding disease persistence continues to
shrink and may disappear via either a saddle-node of limit cycles
or a subcritical Hopf bifurcation when the unstable limit cycle
collides with the stable limit cycle or stable persistence equili-
brium, respectively.
Appendix E. Parameter variation and sensitivity analysis
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