Session 3: Reading & Writing to files, Manipulating R objects
Foundations of Quantitative Ecology (EEOB 8896.11)

Paul J. Hurtado
(hurtado.10@mbi.osu.edu)

Mathematical Biosciences Institute (MBI)
The Ohio State University

Last compile: September 4, 2013
Interactive session

Open R, and a new script, to explore R syntax by example.
Interactive session

Open R, and a new script, to explore R syntax by example.

c(1,2,3,2+2) # a vector (semicolon optional, but good form)

[1] 1 2 3 4

c(1:4+2, 0, (1:4)+2, 0, 1:(4+2)) # When in doubt, use parentheses!

[1] 3 4 5 6 0 3 4 5 6 0 1 2 3 4 5 6

seq(1,5,length=9) # see ?seq for by=0.5 vs length=9 arguments.

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Generate data for y=5+5*x, x=1:10, observation error sd=10
set.seed(9413) # Ensure we all have the same "random" data
xydata = data.frame(x=1:10, # ?data.frame for details.
 y=rnorm(10, mean=5+5*(1:10), sd=10))
Inside R Objects

Vectors, lists, data.frames, ...

```r
x = xydata$x   ## See course website for "=" vs "<-"!
y <- xydata$y;   ## Call variable alone to display value
## Alternatively, we could have used attach(xydata)
##
y[1]  # first element
##     [1] 17

y[c(2,4,5)]  # second, fourth and fifth elements
##     [1] 15.43 22.94 38.25

x>4  # a vector of logical values
##     [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

y[x>4]  # subset all the "TRUE" elements
##     [1] 38.25 20.49 32.43 37.59 42.89 57.03
```
Inside R Objects

xydata[2,,] # As a matrix: row2; all columns

x y
2 2 15.43

head(xydata, 2) # See ?tail

x y
1 1 17.00
2 2 15.43

names(xydata)

[1] "x" "y"

dim(xydata)

[1] 10 2

c(nrow(xydata), ncol(xydata))

[1] 10 2
Inside R Objects

Basic types: logical, integer, real, complex, string/character, raw

Functions like `plot()` query class, type to determine plotting routine.

```
## What kind of object?
class(xydata)
## [1] "data.frame"

typeof(xydata)
## [1] "list"

mode(xydata)
## [1] "list"
```

```
## What kind of object?
class(x)
## [1] "integer"

typeof(x)
## [1] "integer"

mode(x)
## [1] "numeric"
```


Also: http://stackoverflow.com/questions/6258004/,
http://cran.r-project.org/doc/manuals/r-release/R-lang.html#Objects
Base Graphics

\begin{verbatim}
plot(x, y) ## See \texttt{?par} for plot arguments like…
plot(x, y, type = "b", lty = 2, lwd = 2, pch = 19, col = "red")
plot(xydata, pch = 19)
fit = lm(y \sim x, data = xydata) ## linear regression
abline(fit, lty = 1, lwd = 3, col = "darkgray") ## See \texttt{?lm, ?abline}
\end{verbatim}

Ex 1: What does \texttt{summary(fit)} do? \texttt{plot(fit)}?
Ex 2: Run \texttt{demo(graphics)}
Ex 3: See CRAN Task View on graphics packages.
Ex 4: Install \texttt{lattice}. Load it, then \texttt{demo(lattice)}. See \texttt{ggplot2}.
Writing Files:

```r
# WRITING files: formatting matters!
write.table(xydata, "xydata-table.csv", sep = "",",
            col.names = TRUE, row.names = FALSE)
write.csv(xydata,"xydata.csv")
# Alternatively, we can save the whole R object:
save(xydata, file="xydata.Rdata")  ## See ?load to read *.Rdata
## View contents by typing object names, or...
dir(all.files=TRUE) ## view directory contents
```
Reading & Writing Files

Writing Files:

```r
# WRITING files: formatting matters!
write.table(xydata, "xydata-table.csv", sep = ",",
col.names = TRUE, row.names = FALSE)
write.csv(xydata,"xydata.csv")
# Alternatively, we can save the whole R object:
save(xydata, file="xydata.Rdata")
## See ?load to read *.Rdata
dir(all.files=TRUE)  ## view directory contents
```

Reading files:

```r
rm(xydata)  # remove xydata from the workspace
# READING files: formatting REALLY matters!
xydatatable = read.csv("xydata-table.csv")
xydatacsv = read.csv("xydata.csv")
# R objects load directly into memory
load("xydata.Rdata")  ## See ?load for details.
## View contents by typing object names, or...
edit(xydatacsv)
```

Exercise: Modify the `write.csv()` call above to exclude the row names from the first column of `xydata.csv`.
Script to simulate simple linear model output, recover model parameters by fitting simulated data,

Simulation model

```r
SimFunc <- function(x=sort(runif(50, 0, 100)), B0=10, B1=0.3, sd=10, seed=NULL)
    set.seed(seed) # Nothing happens if seed=NULL
    data.frame(x = x, y = rnorm(length(x), B0 + B1*x, sd)) ## Same as
    #data.frame(x = x, y = B0 + B1*x + rnorm(length(x), 0, sd))
}

# Generate data and plot it
xy=SimFunc(seed=1)

# Fit the model ...
fit = lm(y~x,data=xy)

# ... and plot.
plot(xy, pch=20, cex=1.4)
abline(fit)

text(mean(range(xy$x)), max(xy$y),
     paste("B0 = ",signif(fit$coefficients[1],4),
       " , B1 = ",signif(fit$coefficients[2]),sep=''))

summary(fit)
```
B0 = 9.292, B1 = 0.331845
Exercises:

1. Rewrite the script to use various non-normal errors. How good is the fit?

2. Write a for loop to save 1000 parameter estimates from 1000 simulated data sets. Plot the results as histograms.