
Simulating ODEs Simulating ODEs + Noise Poisson Process

Session 7: ODE Simulation + Noise
Foundations of Quantitative Ecology (EEOB 8896.11)

Paul J. Hurtado
(hurtado.10@mbi.osu.edu)

Mathematical Biosciences Institute (MBI)
The Ohio State University

Last compile: October 3, 2013

Simulating ODEs Simulating ODEs + Noise Poisson Process

The Rosenzweig-MacArthur Model

Classical predator-prey (consumer-resource) model. Assumptions?
Logistic prey (R) growth, type-II predation, consumption drives predators
(C) reproduction, and age-independent mortality:

dR

dt
=rR(1− R/K)− aRC

1 + aThR
dC

dt
=χ

aRC

1 + aThR
− µC

Dynamics: Steady-state coexistence at

R∗ =
µ

a(χ− µTh)
; C∗ =

r

a

(
1− R∗

K

)
(1 + aThR∗)

if

K <
1

aTh

(
χ+ µTh

χ− µTh

)

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs

Simulate ODEs using the deSolve package:

library(deSolve) #install.packages('deSolve') if needed

dydt <- function(ts, y, params) {
r = params[1]

K = params[2]

a = params[3]

Th = params[4]

conv = params[5]

mu = params[6]

dy1dt = r * y[1] * (1 - y[1]/K) - a * y[1] * y[2]/(1 + a * Th * y[1])

dy2dt = conv * a * y[1] * y[2]/(1 + a * Th * y[1]) - mu * y[2]

return(list(c(dy1dt, dy2dt)))

}
y0 = c(50, 5)

times = 0:500

prms = c(r = 0.2, K = 100, a = 0.02, Th = 1, conv = 1, mu = 0.4)

out1 = ode(y0, times, dydt, prms, method = "lsoda")

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs

How does ode() work? A differential equation (e.g. dx
dt = f (x)) models

rates of change in x. Since the derivative is approximately

x(t + ∆t)− x(t)

∆t
≈ f (x(t))

we can rearrange things to approximate a step forward in time by

x(t + ∆t) ≈ x(t) + f (x(t)) ·∆t

That is, we add a change given by rate f (x) times time step, ∆t.
The function ode() does something similar.

0 5 10 15

0.
0

0.
4

0.
8

t

x(
t)

x(t)

0 5 10 15

0.
0

0.
4

0.
8

t

x(
t)

x(t) + f(x(t))∆t

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs

0 100 200 300 400 500

10
30

50

time

P
op

ul
at

io
n

(#
)

0 100 200 300 400 500

0
40

80

time

P
op

ul
at

io
n

(#
)

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs

0 100 200 300 400 500

10
30

50

time

P
op

ul
at

io
n

(#
)

0 100 200 300 400 500

0
40

80

time

P
op

ul
at

io
n

(#
)

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs

Code for the plots on the previous slide:

matplot(out1[,1], out1[,-1], type="l", lwd=2, col=c("blue","orange"),

lty=1, xlab="time",ylab="Population (#)")

with(as.list(prms),{
abline(h = mu/(a*(conv-mu*Th)),col="blue",lty=2)

abline(h = r/a*(1-(mu/(a*(conv-mu*Th)))/K)*

(1+a*Th*(mu/(a*(conv-mu*Th)))), col="orange",lty=2)

})
prms2 <- prms; prms2["K"] <- 150;

out2=ode(y0, times, dydt, prms2, method="lsoda");

matplot(out2[,1], out2[,-1], type="l", lwd=2, col=c("blue","orange"),

lty=1,xlab="time",ylab="Population (#)")

with(as.list(prms2),{
abline(h = mu/(a*(conv-mu*Th)),col="blue",lty=2)

abline(h = r/a*(1-(mu/(a*(conv-mu*Th)))/K)*

(1+a*Th*(mu/(a*(conv-mu*Th)))), col="orange",lty=2)

})

Exercise: Recreate these plots using the ggplot2 package instead of
matplot(). Hint: start by googling “matplot ggplot2 -python”.

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs + ‘Intrinsic Noise’

Exercise #1: Implement the Stochastic Simulation Algorithm (SSA; aka
Gillespie Algorighm) for the above model with demographic stochasticity.

1 Compute a rate for some event (birth, death, predation)

2 Draw a random exponential time step to the next event

3 Use a random uniform to decide which event happened

4 Update the state variables, then repeat.

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs + ‘Intrinsic Noise’

Pseudocode for Exercise #1:

Use the parameter values from the ODE script

#

Setup for iterating forward in time...

times = c(0) # initialize

y = y0 # initial conditions from above

i = 0 # initialize indexing/count variable

#

Iterate forward in time until we hit t=500...

recompute rates, total event rate, event probs

Pick a random time step and update times

Pick which event happened and update y values

Repeat

#

Plot and compare with ODE output from above

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs + ‘Intrinsic Noise’

Components we’ll need to put together:

event_rates = c(

r*y[1], # Increment y[1] only (birth)

r*y[1]^2/K, # Decrement y[1] only (natural death)

a*y[1]*y[2]/(1+a*Th*y[1]), # Decrement y[1] (predation)

conv*a*y[1]*y[2]/(1+a*Th*y[1]), # Increment y[2] (birth)

mu*y[2] ## Decrement y[2] (predator death)

)

Total event rate

S = sum(event_rates) # rate of "something" happening

Proportions for picking event type

event_probs = event_rates/S

Check cases with if-else statments, e.g.

if(event1) { y[,i+1] <- update_accordingly(y[,i]) }
else if(event2) { ... }
...

else if(lastevent) {...}
OR use something like switch(). Ex:

switch(sample(1:5),"one","two","three","four","five")

switch(which(runif(1) < cumsum(event_probs))[1],

c(1,0), c(-1,0), c(-1,0), c(0,1),c(0,-1))

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs + ‘Intrinsic Noise’

Solution:

prms = c(r=0.2,K=100,a=0.02,Th=1,conv=1,mu=0.4)

y0 = c(50, 5) # initial conditions

Unpack our parameter values

r = prms[1]

K = prms[2]

a = prms[3]

Th = prms[4]

conv = prms[5]

mu = prms[6]

Set up the while loop to iterate steps..

i = 1

times = c(0)

y = cbind(P=y0[1],C=y0[2])

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs + ‘Intrinsic Noise’

Solution (continued):

Set up the while loop to iterate steps..

i = 1 # index for while loop

times = c(0) # store time values here

y = cbind(P=y0[1],C=y0[2]) # store state values

while(times[i] < 500) {
Update which step we're on

Recompute our rates

... and total event rate

Recompute proportions & pick which event occcured

Update y[i,] accordingly

update time

}
plot output

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs + ‘Intrinsic Noise’

while(sum(y[i,]) > 0 & times[i] < 500) { # Stop if both extinct, t>500

i <- i+1 # Update which step we're on

event_rates = c(# Recompute our rates. Events are:

r*y[i-1,1], # Increment y[1] only (birth)

r*y[i-1,1]^2/K, # Decrement y[1] only (natural death)

a*y[i-1,1]*y[i-1,2]/(1+a*Th*y[i-1,1]), # Decrement y[1] (predation)

conv*a*y[i-1,1]*y[i-1,2]/(1+a*Th*y[i-1,1]), # Increment y[2] (birth)

mu*y[i-1,2] ## Decrement y[2] (predator death)

)

Total event rate

S = sum(event_rates) ## rate of "something" happening

Proportions for picking which event type occcured

event_probs = event_rates/S

Pick an event type and update y[i,] accordingly

y <- rbind(y, y[i-1,]+switch(which(runif(1) < cumsum(event_probs))[1],

c(1,0), c(-1,0), c(-1,0), c(0,1),c(0,-1)))

times[i] = times[i-1] + rexp(1,rate=S) # update time

}
matplot(times,y,type="l",col=c("blue","orange"),lty=1,lwd=2,

xlab="time",ylab="Population (#)",main="Stochastic")

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs

Exercise #1: Modify the above solution so that it all takes place inside
a function SimModel() that takes a parameter list (like prms) and
returns cbind(times,y).

Exercise #2: Use that function to create a 2x2 figure with the above
ODE model output in the first column, and the stochastic model output
for the corresponding parameter values in the second column.

Exercise #3: Modify the solution to #2 to plot multiple replicates of
the stochastic simulations in the second column.

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs + ‘Intrinsic Noise’

Q: So what did we just do?

A: We used our ODE terms to parameterize and then simulate
a marked poisson process.

Basic Poisson Process Assumptions:
1 Event probabilities are memoryless. The probability of an

event in a small time interval of length ∆t is λ∆t.
2 For N individuals, we can pick ∆t small enough so almost

always get at most 1 event per time interval. In the limit
as ∆t → 0, we get a continuous time process.

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs + ‘Intrinsic Noise’

Q: So what did we just do?
A: We used our ODE terms to parameterize and then simulate
a marked poisson process.

Basic Poisson Process Assumptions:
1 Event probabilities are memoryless. The probability of an

event in a small time interval of length ∆t is λ∆t.
2 For N individuals, we can pick ∆t small enough so almost

always get at most 1 event per time interval. In the limit
as ∆t → 0, we get a continuous time process.

Simulating ODEs Simulating ODEs + Noise Poisson Process

Simulating ODEs + ‘Intrinsic Noise’

Q: So what did we just do?
A: We used our ODE terms to parameterize and then simulate
a marked poisson process.

Basic Poisson Process Assumptions:
1 Event probabilities are memoryless. The probability of an

event in a small time interval of length ∆t is λ∆t.
2 For N individuals, we can pick ∆t small enough so almost

always get at most 1 event per time interval. In the limit
as ∆t → 0, we get a continuous time process.

Simulating ODEs Simulating ODEs + Noise Poisson Process

Poisson Processes

Homogeneous Poisson Process:

1 Times between events are exponentially distributed with rate λ.

2 The number of events in a time interval of length T is Poisson
distributed with rate λT .

Inhomogeneous Poisson Process:

1 Events happen at time-dependent rate λ(t).

2 If there is some upper bound λ on λ(t) we can simulate our IPP by
thinning the HPP with rate λ by throwing out events with
probability λ(t)/λ.

Events can be marked, according to some other process, to specify event
types.

Simulating ODEs Simulating ODEs + Noise Poisson Process

Poisson Processes

Exercise 1: Simulate a poisson process using rexp and
confirm it has the appropriate poisson distribution.

Exercise 2: Simulate a poisson process with a periodic rate
λ(t) by thinning the appropriate homogeneous poisson process.

	Simulating ODEs
	Simulating ODEs

	Simulating ODEs + Noise
	Simulating ODEs + Noise

	Poisson Process
	Poisson Process

