Stochastic Processes

# Stochastic Models Week 11 – Wednesday Mathematical Modeling (Math 420/620)

Paul J. Hurtado

4 Nov, 2015

http://www.pauljhurtado.com/teaching/FA15/

### No Class Next Wednesday (11/11)

Veterans Day

http://www.pauljhurtado.com/teaching/FA15/

### No Class Next Wednesday (11/11)

Veterans Day

### **Exam Options**

• in-class: Nov 18? Nov 23?

http://www.pauljhurtado.com/teaching/FA15/

### No Class Next Wednesday (11/11)

Veterans Day

### **Exam Options**

- in-class: Nov 18? Nov 23?
- take-home Nov 16-23? Nov 12-20? Other?

# **Markov Chains**

**Markov chain**: Consider a sequence of r.v.s  $X_k \in \{1, ..., N\}$  where  $X_0 = x_0$  is some fixed constant. Then for k = 1, 2, ... the conditional probability

$$P(X_{k+1}=j|X_k=i)=p_{ij}$$

We call the matrix  $\mathbf{P} = (p_{ij})$  the **transition matrix** of the Markov Chain.

Stochastic Processes

# **Markov Chains**

Let the elements of vector  $\pi$  be the probabilities of being in state *i* after *k* "jumps" (iterations).

$$\pi_k(i) = P(X_k = i)$$

Then

$$\pi_{k+1} = \pi_k \mathbf{P}$$

and when there exist a solution to

$$\pi=\pi\,\mathbf{P}$$

we say the stochastic process has a steady state  $\pi$ .

0

Stochastic Processes

# Example (Fig. 8.2)



Stochastic Processes

### Example

#### **Transition Matrix?**

Recall that  $P(X_{k+1} = j | X_k = i) = p_{ij}$ . Thus,

Stochastic Processes

### Example

# **Transition Matrix?** Recall that $P(X_{k+1} = j | X_k = i) = p_{ij}$ . Thus,

$$\mathbf{P} = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 0.7 & 0.3 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

\_

Stochastic Processes

# Example

### **Transition Matrix?** Recall that $P(X_{k+1} = j | X_k = i) = p_{ij}$ . Thus,

$$\mathbf{P} = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 0.7 & 0.3 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

**Exercise #1:** Find  $\pi_2$  if  $\pi_1 = [1/3, 1/3, 1/3]$ .

Stochastic Processes

# Example

Δnnouncements

#### Transition Matrix? Recall that $P(X_{k+1} = j | X_k = i) = p_{ij}$ . Thus, $\begin{bmatrix} 1/3 & 1/3 & 1/3 \end{bmatrix}$

$$\mathbf{P} = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 0.7 & 0.3 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

**Exercise #1:** Find  $\pi_2$  if  $\pi_1 = [1/3, 1/3, 1/3]$ .

**Exercise #2:** Does  $\pi_k$  converge as  $k \to \infty$ ?

### **Theorem (Perron-Frobenius)**

If a non-negative, square matrix  $\mathbf{P}$  raised some some power m yields a matrix  $\mathbf{P}^m$  which has strictly positive entries (i.e.,  $\mathbf{P}$  is power-positive) then  $\mathbf{P}$  has a unique dominant eigenvalue which is real and positive, and the corresponding eigenvector has all positive entries.

Furthermore, an *nxn* non-negative matrix **P** is power-positive *if and only if*  $\mathbf{P}^{n^2-2n+2}$  has strictly positive entries.