Discrete-time Dynamical Systems

Maps: Discrete-Time Dynamical Systems Week 12 – Monday

Mathematical Modeling (Math 420/620)

Paul J. Hurtado

9 Nov, 2015

Discrete-time Dynamical Systems

Equilibria & Local Stability

Comparison of Equilbrium Stability Analysis for continuous-(ODE) and discrete-time (maps) dynamical systems.

ODEs

Assume $t \in [0, \infty)$, $\mathbf{x}(t) \in \mathbb{R}^n$, f differentiable.

 $\dot{\mathbf{x}} = f(x)$

Solutions: Continuous $\mathbf{x}(t)$

Maps

Assume $t \in \{0, 1, 2...\}$, $\mathbf{x}_k \in \mathbb{R}^n$, f differentiable.

$$x_{t+1} = f(x_t)$$

Solutions: $\mathbf{x}_0, \mathbf{x}_1, \dots$

Discrete-time Dynamical Systems ○●○

Equilibria

ODEs

Equilibria \mathbf{x}_* satisfy $\dot{\mathbf{x}} = \mathbf{0}$, and thus satisfy

 $f(\mathbf{x}_*) = 0.$

Example:

$$\dot{x} = r x$$

 $x_{*} = 0$

implies

Maps

Equilibria (aka **fixed points**) satisfy $\mathbf{x}_{k+1} = \mathbf{x}_k$, and thus $f(\mathbf{x}_*) = \mathbf{x}_*$ Example: $x_{k+1} = r x_k$ implies

 $x_{*} = 0$

Note: In the ODE example, *r* is an *exponential growth* (r > 0) or *decay* (r < 0) *rate.* In the discrete map example, it is a *multiplier*.

Discrete-time Dynamical Systems ○○●

Local Asymptotic Stability (LAS)

ODEs: $\dot{\mathbf{x}} = f(\mathbf{x})$

Equilibrium \mathbf{x}_* is LAS if the Jacobian of f evaluated at \mathbf{x}_* has all **eigenvalues** with **negative real part**:

$$\operatorname{Re}(\lambda_i) < 0$$

Example:

 $\dot{x} = r x$ $x_* = 0, \quad \lambda = r$ Thus, x_* is **stable** if r < 0. Maps: $\mathbf{x}_{n+1} = f(\mathbf{x}_n)$

Equilibrium \mathbf{x}_* is LAS if the Jacobian of f evaluated at \mathbf{x}_* has all **eigenvalues** with **magnitude** < 1:

$$|\lambda_i| < 1$$

Example:

$$x_{k+1}=r\,x_k$$

 $x_*=0, \quad \lambda=r$
Thus, x_* **stable** if $r\in(-1,1).$