Dynamical Systems: Introduction
Mathematical Modeling (Math 420/620)

Paul J. Hurtado

November 8, 2017
Overview

Building Dynamic Models, ODEs

- Mean Field Equations & “Bathtub” Models

Analysis of Dynamic Models (Topic Overview)

- State Space & Vector Fields
- Asymptotic Behavior: What happens as $t \to \infty$? Parameter dependence?
- Equilibrium Stability Analysis
- Other dynamics? Bifurcation Theory
- Other Attractors: Limit Cycles, etc.
- Sensitivity Analysis & Simulation
Example: Exponential Decay

Ex: tracking atoms experiencing radioactive decay

```r
Ts = sort(rexp(50, 1/100))
Time = seq(0, max(Ts), length=300)
N = Time*0;  # counts of atoms at time t go here.
N[1] = 50;
for(i in 2:300) { N[i] = sum(Ts > Time[i]) }  # number not yet decayed
plot(Time, N); curve(50*(exp(-x/100)), 0, max(Ts), add=TRUE, col="red")
```
Example: Exponential Decay

```r
## Ex: tracking atoms experiencing radioactive decay
Ts = sort(rexp(1e4, 1/100))
Time = seq(0, max(Ts), length=300)
N = Time*0; # counts of atoms at time t go here.
N[1] = 1e4;
for(i in 2:300) { N[i] = sum(Ts > Time[i]) } # number not yet decayed
plot(Time, N); curve(1e4*(exp(-x/100)), 0, max(Ts), add=TRUE, col="red")
```

![Graph showing exponential decay](image-url)
Example: Exponential Decay as Stochastic Map

Simulate as a discrete map with a Binomial # of atoms decaying each time step, i.e.,

\[N(t + dt) = N(t) - \text{rbinom}(1, n = N(t), \text{prob} = r \cdot dt) \]

```r
N0=1e3; dt=1/100; r=1; N=c(N0); i=1;
while(N[i] > 0) { N[i+1]=N[i]-rbinom(1,N[i],r*dt); i=i+1; } # number not yet decayed
Time=dt*(1:length(N))-dt; plot(Time,N,xlab="Time");
curve(N0*(exp(-r*x)),0,dt*length(N),add=TRUE,col="red")
```
Implicit Assumptions?

Which (implicit) assumptions were made? Which could be relaxed?

Spatially structured interactions?

Small N vs $N \to \infty$?

Time-dependent or N-dependent rate?

Others?

Good rule of thumb with ODE models:
Implicit assumptions typically ignore spatial interactions, stochastic variation and/or small numbers of individuals, and/or the discrete nature of individuals.
Mean Field Equations: Applying LLN, CLT

Example: Suppose there are N_0 atoms of radioactive $^{238}_{92}$U. Over time interval Δt each can decay w.p. $\lambda \Delta t$.

Let $N(t)$ be the number of uranium atoms. The number lost during time interval $[t, t + \Delta t]$ is approximately a binomial random variable with parameters $n = N(t)$ and $p = \lambda \Delta t$. Thus, the expected number lost is $n p = \lambda N(t) \Delta t$.

Assuming N_0 is large, then the Law of Large Numbers (LLN) allows us to claim $N(t + \Delta t) - N(t) \approx -\lambda N(t) \Delta t$. Taking $\Delta t \to 0$ we can derive the mean field model:

$$\frac{dN(t)}{dt} = -\lambda N(t), \quad N(0) = N_0$$
Mean Field Equations

Example: Suppose there are U_0 atoms of radioactive $^{238}_{92}$U. Over time interval Δt each can decay w.p. $\lambda_\alpha \Delta t$ to $^{234}_{90}$Th and α particle 4_2He. Thorium-234 can then decay via loss of a β particle (positron) to protactinium-234 w.p. $\lambda_\beta \Delta t$.

Let $T(t)$ be the number of thorium atoms, and $P(t)$ the number of protactinium atoms. We can now use the model

$$\frac{dU(t)}{dt} = -\lambda_\alpha U(t)$$

$$\frac{dT(t)}{dt} = \lambda_\alpha U(t) - \lambda_\beta T(t)$$

$$\frac{dP(t)}{dt} = \lambda_\beta T(t)$$
Exercise

Derive the following UTP model

\[
\frac{dU(t)}{dt} = -\lambda_\alpha U(t)
\]
\[
\frac{dT(t)}{dt} = \lambda_\alpha U(t) - \lambda_\beta T(t)
\]
\[
\frac{dP(t)}{dt} = \lambda_\beta T(t)
\]

1. Write a discrete time map (step size \(\Delta t\)) that models the numbers of atoms transitioning states in each time step using Binomial distributions.

2. Use the LLN to find the corresponding mean-field map.

3. Take the limit as \(\Delta t \to 0\) to find the continuous time (ODE) approximation of this mean-field discrete map.
ODEs: “Bathtub” Models

Model the “flow” of mass from one compartment to another:

\[
\frac{dU(t)}{dt} = -\lambda_\alpha U(t)
\]

\[
\frac{dT(t)}{dt} = \lambda_\alpha U(t) - \lambda_\beta T(t)
\]

\[
\frac{dP(t)}{dt} = \lambda_\beta T(t)
\]
Intuition for ODE model terms

- Recall the 5-step process!
 - Question? Assumptions? Simplify, etc...

- ODE models often average over heterogeneity, space, etc.

- **Linear terms** correspond to exponential decay rates.

- More complex transition rates? Derive\(^1\) terms accordingly.

\(^1\)Remember: Lie, Cheat, Steal! (see Ch. 9 in Ellner & Guckenheimer)
Dynamic Model (ODE) Basics

Suppose $x \in \mathbb{R}^n$, functions $f = [f_1, f_2, \ldots, f_n]$ are smooth2, and

$$\frac{dx}{dt} = f(x), \quad x(0) = x_0.$$

State Variables: $x = [x_1, x_2, \ldots, x_n]$
Initial Conditions: x_0
State Space: $S \subseteq \mathbb{R}^n$ ($n = \# \text{ of state var.}$)
Vector Field: f
Parameter Space: Ex: \mathbb{R}^{n^2} for a full linear system.
Trajectory/Orbit: Solutions $x(t)$ to the above IVP.

2Continuous partial derivatives near x_0 guarantee existence, uniqueness of solutions.
Examples

What are the state variables? State space? Parameter space?

1. \[\frac{dx}{dt} = r x \left(1 - x/K \right) \]

2. \[\frac{dN}{dt} = r N \left(1 - (N/K)^\theta \right) \]

3. \[\frac{du}{d\tau} = u \left(1 - u^\theta \right) \]

4. \[\dot{H} = r_H H - a_H H^2 - b_H S H \]
 \[\dot{S} = r_S S - a_S S^2 - b_S H S \]
Equilibria

Trajectories are often categorized by **qualitative properties** (e.g. steady-state vs. cycling vs. chaos) of their **asymptotic behavior** (i.e., what do solutions look like as $t \to \infty$?).

Equilibrium solutions are the natural place to begin studying those asymptotic properties.

Definition

An **equilibrium** of

\[
\frac{dx}{dt} = f(x)
\]

is any **constant** solution $x(t) = x_*$ which therefore satisfies

\[
f(x_*) = 0.
\]
Find all equilibrium solutions to each of the following ODEs:

1. \[\frac{dN}{dt} = rN \]
2. \[\frac{dx}{dt} = K - x \]
3. \[\frac{dx}{dt} = x(K - x) \]
4. \[\frac{dx}{dt} = r x \left(1 - \frac{x}{K}\right) \]
5. \[\frac{dx}{dt} = x \left(1 - x\right)(a - x) \]
6. \[\frac{dx}{dt} = \sin(x) \]
Stability Concepts

1. We say \mathbf{x}_* is **locally asymptotically stable (LAS)** (or sometimes just **locally stable** or **attracting**) if all nearby trajectories converge to \mathbf{x}_* (i.e., $\mathbf{x}(t) \to \mathbf{x}_*$ as $t \to \infty$).
Stability Concepts

1. We say x_* is **locally asymptotically stable (LAS)** (or sometimes just **locally stable** or **attracting**) if all nearby trajectories converge to x_* (i.e., $x(t) \to x_*$ as $t \to \infty$).

2. We call x_* **globally asymptotically stable (GAS)** (or ...) if all trajectories converge to x_*.

Stability Concepts

1. We say x_* is **locally asymptotically stable (LAS)** (or sometimes just *locally stable* or *attracting*) if all nearby trajectories converge to x_* (i.e., $x(t) \to x_*$ as $t \to \infty$).

2. We call x_* **globally asymptotically stable (GAS)** (or ...) if all trajectories converge to x_*.

3. We say x_* is **Lyapunov Stable** if trajectories that start near it stay near x_*.
Stability Concepts

1. We say x_* is **locally asymptotically stable (LAS)** (or sometimes just **locally stable** or **attracting**) if all nearby trajectories converge to x_* (i.e., $x(t) \to x_*$ as $t \to \infty$).

2. We call x_* **globally asymptotically stable (GAS)** (or ...) if all trajectories converge to x_*.

3. We say x_* is **Lyapunov Stable** if trajectories that start near it stay near x_*.

4. We call x_* **neutrally stable** if it is Lyapunov Stable but not attracting.
Phase Space & 1-D Vector Fields

Phase Space: Horizontal axis x, vertical axis $\frac{dx}{dt}$.

Bacterial infection growth model from Hurtado, 2012.

\[
\frac{dp}{dt} = r \ p \ (1 - p) - \frac{k \ p}{\mu + p}.
\]

In the figures,

\[
p_{\text{crit}} = \frac{\left((1 - \mu) + \sqrt{(1 + \mu)^2 - \frac{4}{r}k} \right)}{2},
\]

\[
p_{\text{max}} = \frac{\left((1 - \mu) + \sqrt{(1 + \mu)^2 - \frac{4}{r}k} \right)}{2}.
\]
Equilibrium Stability

Theorem

(1D) An equilibrium \(x_* \) of \(\dot{x} = f(x) \) is locally asymptotically stable if
\[
f'(x_*) < 0
\]
and is unstable if
\[
f'(x_*) > 0.
\]
Theorem

(1D) An equilibrium x_* of $\dot{x} = f(x)$ is locally asymptotically stable if

$$f'(x_*) < 0$$

and is unstable if

$$f'(x_*) > 0.$$

Sketch of Proof.

If $u = x - x_*$, and f is smooth near x_* then $u = 0$ is an equilibrium of $\dot{u} \approx f'(x_*) u$ which has (approximately) exponential solutions that grow away from (or decay towards) 0 depending on the sign of $f'(x_*)$.

Phase Space & 1-D Vector Fields

Sketch the *phase portrait* for each of the following, and use it to determine the stability of each equilibrium point:

1. \(\frac{dx}{dt} = K - x \)
2. \(\frac{dx}{dt} = x (K - x) \)
3. \(\frac{dx}{dt} = rx \left(1 - \frac{x}{K}\right) \)
4. \(\frac{dx}{dt} = x (1 - x)(a - x) \)
5. \(\frac{dx}{dt} = \sin(x) \)
Equilibrium Stability

Theorem

An equilibrium \mathbf{x}_* of $\dot{\mathbf{x}} = f(\mathbf{x})$ is locally asymptotically stable (LAS) if the Jacobian matrix \mathbf{J} (where $J_{ij} = \frac{\delta f_i}{\delta x_j}$) evaluated at \mathbf{x}_* has eigenvalues with negative real parts. That is, \mathbf{x}_* is LAS if $\text{Re}(\lambda_i) < 0$ for each of the n eigenvalues of matrix $\mathbf{J}(\mathbf{x}_*)$.

Sketch of Proof: Consider the linear approximation of the vector field around \mathbf{x}_*. Then for a small neighborhood of \mathbf{x}_*, $\dot{\mathbf{x}} = f(\mathbf{x}) \approx \mathbf{J}(\mathbf{x}_*) \mathbf{x}$. Let $\mathbf{u} = \mathbf{x} - \mathbf{x}_*$ and $\mathbf{A} = \mathbf{J}(\mathbf{x}_*)$, then $\dot{\mathbf{u}} \approx \mathbf{A} \mathbf{u}$. If \mathbf{A} is full rank then ...
Equilibrium Stability

Theorem

An equilibrium x_\star of $\dot{x} = f(x)$ is **locally asymptotically stable (LAS)** if the Jacobian matrix J (where $J_{ij} = \frac{\delta f_i}{\delta x_j}$) evaluated at x_\star has eigenvalues with negative real parts. That is, x_\star is LAS if $\text{Re}(\lambda_i) < 0$ for each of the n eigenvalues of matrix $J(x_\star)$.

Sketch of Proof:

Consider the linear approximation of the vector field around x_\star. Then for a small neighborhood of x_\star,

$$\dot{x} = f(x) \approx J(x_\star) x.$$

Let $u = x - x_\star$ and $A = J(x_\star)$, then

$$\dot{u} \approx Au$$

If A is full rank then ...
Sketch of Proof (cont’d):

... let \(Q \) be the matrix whose columns are the eigenvectors of \(A \), and let \(D = (\lambda_1, ..., \lambda_n) \). Then doing a standard change-of-coordinates

\[
\dot{u} = Q D Q^{-1} u \\
Q^{-1} \dot{u} = D Q^{-1} u \\
\dot{y} = D y
\]

which implies \(\dot{y}_i = \lambda_i y_i \) and thus

\[
y_i(t) = y_i(0) \exp(\lambda_i t).
\]

Therefore, trajectories that begin sufficiently close to equilibrium \(x_* \) will approximately grow or decay at rate \(Re(\lambda_i) \) along the corresponding eigenvectors of \(J(x_*) \).
Equilibrium Stability

Find all equilibrium solutions to each of the following ODEs:

1. \(\frac{dx}{dt} = K - x \)
2. \(\frac{dx}{dt} = x (1 - x)(a - x) \)
Two-species Competition (MMM Ex. 4.1)

\[
\dot{H} = r_H H - a_H H^2 - b_H S H
\]

\[
\dot{S} = r_S S - a_S S^2 - b_S H S
\]

Predator-Prey

\[
\dot{x} = r x (1 - x) - \frac{a x y}{k + x}
\]

\[
\dot{y} = \frac{a x y}{k + x} - y
\]
Two-species Competition

Goal: When can the two tree species coexist?

\[
\begin{align*}
\dot{H} &= r_H H - a_H H^2 - b_H S H \\
\dot{S} &= r_S S - a_S S^2 - b_S H S
\end{align*}
\]

State Variables: *(State Space is non-negative orthant in \(\mathbb{R}^2 \))*

- \(H(t), S(t) \) - Hardwood & Softwood population size (tons/acre)

Rates: (Units are tons/acre/year)

- \(g_H(t) = r_H H - a_H H^2 \) Hardwood growth rate
- \(g_S(t) = r_S S - a_S S^2 \) Softwood growth rate
- \(c_H(t) = b_H S H \) - Competitive impact on Hardwoods
- \(c_S(t) = b_S S H \) - Competitive impact on Softwoods

Parameters: intrinsic growth rate \(r_i \), *intraspecific* competition coefficients \(a_i \), and *interspecific* competition coefficient \(b_i \).
Overview: Dynamic Models (ODEs)

Let
\[\frac{dx}{dt} = f(x), \quad x(0) = x_0 \]

where \(x(t) \in \mathbb{R}^n \) \(\forall t \in \mathbb{R} \), and \(f \) is smooth.

Common Question in Applications:
What are the asymptotic dynamics of this model?

Approach:
(1) Equilibrium Stability Analysis and
(2) Bifurcation Analysis\(^3\)

\(^3\)We'll only briefly see bifurcation theory in this course. For more on the subject, I highly recommend *Dynamical Systems & Chaos* by Steve Strogatz.