
MATH 420 HW #3 SOLUTIONS

Instructions: A printed copy of your homework should be handed in at the start of class
the day it is due. Supplementary electronic files (e.g. R scripts or wxMaxima files;) should
be emailed to the instructor prior to class with file name format LASTNAME-HWX.EXT

1. Asymptotic Distributions. We begin with a few useful definitions and facts about
finite dimensional Markov Chains (adapted from Resnik (2005)1):

If it is possible to reach state j from state i, we say j is accessible from i, denoted as i→ j.

If i → j and j → i, we say that states i and j communicate , which we denote as i ↔ j.
This is an equivalence relation (i.e., it is reflexive, symmetric, and transitive) and thus defines
equivalence classes among states of a Markov Chain.

If a transition matrix P is irreducible (i.e., i↔ j for all i,j in the state space), then it has a
left eigenvalue λ∗ = 1 (which may or may not be unique!) and the associated left eigenvector
v is positive-valued. Thus, when scaled appropriately, that eigenvector is a stationary
distribution of the Markov Chain, since vP = v

Convergence Condition: If P is irreducible and aperiodic (i.e., Pn converges to some
limit as n→∞) then initial distributions converge to that unique stationary distribution. An
nxn transition matrix P is irreducible and aperiodic iff all entries in Pn2−2n+2 are positive,
i.e., iff P is power-positive.

Note: Finite dimensional transition matrices have at most 1 stationary distribution, and
exactly one if they are aperiodic. If Pn → Q, the rows of Q are identical and are the unique
stationary distribution.

For each transition matrix below (i) determine if an arbitrary initial distribution
converges to a stationary distribution by determining if the matrix is irreducible
and aperiodic, (ii) find a stationary distribution of the matrix if one exists.

1a. (10 points)

P =

[
4/5 1/5
4/7 3/7

]
Ans: According to the Convergence Condition given above, since this is a 2x2 matrix (n = 2)
and P22−2·2+2 has all positive entries, it follows that P is irreducible and aperiodic and
therefore convergent, i.e., stationary distribution π exists.

library(expm); # install.packages("expm") if needed

P=matrix(c(4/5,4/7,1/5,3/7),nrow=2) # default: fill down columns...

P%^%2

## [,1] [,2]

## [1,] 0.7542857 0.2457143

## [2,] 0.7020408 0.2979592

1Resnik, S. L. 2005. Adventures in Stochastic Processes. Ch. 2
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The stationary distribution can be obtained either (1) by computing the limiting matrix Q,
or (2) by finding the left-eigenvector of P (aka the right-eigenvector of transpose(P)).

P %^% 100 # The rows are the stationary distribution

## [,1] [,2]

## [1,] 0.7407407 0.2592593

## [2,] 0.7407407 0.2592593

eigen(t(P)) # Then scale so entries sum to 1

## $values

## [1] 1.0000000 0.2285714

##

## $vectors

## [,1] [,2]

## [1,] 0.9438584 -0.7071068

## [2,] 0.3303504 0.7071068

# The unit-length vector must be scaled so it's components sum to 1

eigen(t(P))$vectors[, 1]/sum(eigen(t(P))$vectors[, 1])

## [1] 0.7407407 0.2592593

1b. (10 points)

P =

1/3 1/3 1/3
0 9/11 2/11
1/5 4/5 0


Ans: As above, P is irreducible and aperiodic, and thus convergent.

P = matrix(c(1/3, 1/3, 1/3, 0, 9/11, 2/11, 1/5, 4/5, 0), nrow = 3, byrow = T)

P %^% (3^2 - 2 * 3 + 2)

## [,1] [,2] [,3]

## [1,] 0.05498017 0.7828620 0.1621578

## [2,] 0.04714209 0.7929808 0.1598771

## [3,] 0.05015258 0.7898865 0.1599609

P %^% 100 # rows are the stationary distribution

## [,1] [,2] [,3]

## [1,] 0.048 0.792 0.16

## [2,] 0.048 0.792 0.16

## [3,] 0.048 0.792 0.16
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1c. (10 points)

P =

 0 1 0
1/3 0 2/3
0 1 0


Ans: In this case, Pn2−2n+2 does have zero-valued entries. Thus it is not ‘irreducible and
aperiodic’, and distributions do not converge to a stationary distribution (although one does
exist!).

P = matrix(c(0, 1, 0, 1/3, 0, 2/3, 0, 1, 0), nrow = 3, byrow = T)

P %^% (3^2 - 2 * 3 + 2)

## [,1] [,2] [,3]

## [1,] 0.0000000 1 0.0000000

## [2,] 0.3333333 0 0.6666667

## [3,] 0.0000000 1 0.0000000

eigen(t(P))

## $values

## [1] -1.000000e+00 1.000000e+00 3.469447e-17

##

## $vectors

## [,1] [,2] [,3]

## [1,] 0.2672612 0.2672612 7.071068e-01

## [2,] -0.8017837 0.8017837 -4.284038e-17

## [3,] 0.5345225 0.5345225 -7.071068e-01

eigen(t(P))$vectors[, 2]/sum(eigen(t(P))$vectors[, 2])

## [1] 0.1666667 0.5000000 0.3333333

Since it is possible to get from any state to any other state in 2 steps, we know P is irreducible,
therefore it must be periodic. Iterating P shows that Markov Chain has period 2:

P %^% 51

## [,1] [,2] [,3]

## [1,] 0.0000000 1 0.0000000

## [2,] 0.3333333 0 0.6666667

## [3,] 0.0000000 1 0.0000000

P %^% 52

## [,1] [,2] [,3]

## [1,] 0.3333333 0 0.6666667

## [2,] 0.0000000 1 0.0000000

## [3,] 0.3333333 0 0.6666667

P %^% 53

## [,1] [,2] [,3]

## [1,] 0.0000000 1 0.0000000

## [2,] 0.3333333 0 0.6666667

## [3,] 0.0000000 1 0.0000000

2. Classification of States: Recurrence and Transience.

Some questions require analyses that decompose the state space of a Markov Chain into
recurrent and transient states. To do this we use the following definitions:

3



State j is recurrent if the markov chain returns to that state in a finite number of steps
with probability 1. Otherwise, the state is called transient .

Proposition: The state space S of a Markov Chain can be partitioned into a set of transient
states (T ), and closed disjoint classes of recurrent states (Ci), so that S = T ∪ C1 ∪ C2...

Procedure to identify transient and recurrent states:

First, we define a collection of closed sets (closed here means starting in a set, the Markov
Chain can only transition among events in that set). Second, we identify equivalence classes
(of states that communicate with each other) within each closed set. The equivalence classes
that are closed contain the recurrent states. The non-closed classes contain transient states.

More specifically,
1. Choose a state i and find all states accessible from i, all states accessible from those

states, etc. This closed set of states that can (eventually) be reached from state i will
be denoted as cl(i). This is the smallest closed set containing i. Find a state k not in
cl(i) and repeat for all remaining states.

2. Next, identify the number of equivalence classes within each closed set. Some closed
sets are a single equivalence class (i.e., i ↔ j for all i,j in that equivalence class).
Those closed equivalence classes contain recurrent states. Closed sets may also contain
more than 1 equivalence class. Non-closed equivalence classes (i.e. states that all
communicate with one another, but can also access other states and thus never return)
are the transient states.

Example:

P =


1
2

1
2

0 0
1
2

1
2

0 0
1
2

1
4

0 1
4

0 0 1
2

1
2


Directed Graph representation.

The only closed equivalence class is {1,2}. Those are the recurrent states. It is possible
to start at 3 or 4, and (via 3→ 2) never return. Thus, {3,4} are the transient states.

2. (5 points each) Find the transient and recurrent states for the Markov
Chains implied by the following transition matrices:

2a.


1/2 0 0 1/2
0 2/3 1/3 0
0 1/3 2/3 0
1/8 0 0 7/8

 2b.


1/2 0 0 1/2
0 2/3 1/3 0
0 1/3 1/3 1/3
1/8 0 0 7/8

 2c.


1 0 0 0
1/3 1/3 1/3 0
0 1/3 1/3 1/3
0 0 1/2 1/2


Answer: By the above definitions and procedure...

2a. All recurrent. 2b. {1,4} recurrent, {2,3} transient. 2c. {1} recurrent, {2-4} transient.

3. Absorption Probabilities and Expected Hitting Times.
Once states are classified as transient and recurrent, the transition matrix P can be rearranged
as P′ (see below) so that the transient states correspond to the first rows (columns) of the
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matrix, and the recurrent (e.g., absorbing) states correspond to the remaining rows (columns).

P′ =

[
Q R
0 Prec

]
.

The fundamental matrix
(I −Q)−1

can be used to calculate absorption times and probabilities as detailed below.

Absorption Probabilities: It is sometimes desirable to know the probability of a certain
state being reached before a set of other states. This is often accomplished by modifying the
transition probabilities so that set of target states become absorbing states (i.e., once at state
j the chain remains there w.p. 1) which are a special kind of recurrent state. We then can
frame the question as ‘‘What is the probability that the first recurrent state reached is the
jth recurrent state, given that the Markov Chain started at the ith transient state?”

The probability of reaching the jth absorbing state, starting from the ith transient state is
calculated from the matrix U where uij is the desired probability, and U is given by

U = (I −Q)−1R.

Example: Using the example transition matrix from exercise 2 above, what is the probability
of hitting 1 before 2, given that we start in state 3?

To answer this, let us first rearrange the given transition matrix P as described above, and
call the result P′ (rows are labeled to clarify the rearrangement).

P =

1
2
3
4


1
2

1
2

0 0
1
2

1
2

0 0
1
2

1
4

0 1
4

0 0 1
2

1
2

 P′ =

3
4
1
2


0 1

4
1
2

1
4

1
2

1
2

0 0
0 0 1

2
1
2

0 0 1
2

1
2



This implies Q =

[
0 1

4
1
2

1
2

]
and R =

[
1
2

1
4

0 0

]
.

Now we can rephrase our question: what is the probability of hitting 1 (the first recurrent
state) first, given that we start in state 3 (the first transient state)? The answer to our
question is therefore given by u11, which is obtained from

U = (I −Q)−1R =

[
4
3

2
3

4
3

8
3

] [
1
2

1
4

0 0

]
=

[
2
3

1
3

2
3

1
3

]
.

These results are perhaps not unexpected: Inspecting the directed graph and transition
probabilities given on the previous page, we see that the only way to exit the set of transients
is via 3, and that transitioning to 1 is twice as likely as 2.
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Expected Absorption Times. Let τ be the number of transitions it takes from starting at
transient state i until hitting the first recurrent state. Then we can define a function g and
compute the expected cumulative values starting from i until reaching a recurrent state as

wi = E

(
τ−1∑
n=0

g(Xn)

)
.

If T is the set of transients, it can be shown that for the vector of values g = [g(i), i ∈ T ]′
that the vector expected values w = [wi, i ∈ T ]′ is given by

w = (I −Q)−1 g.

In the special case that g = 1, this yields the expected time spent in the transient states.

Example: Continuing with the above example, we see that the expected times until leaving
the transient state (starting from either state 3 or 4) are given by

w =

[
4
3

2
3

4
3

8
3

] [
1
1

]
=

[
2
4

]
3. (10 points) For the following transition matrix, find (1) the absorption probability
matrix U and use it to answer which recurrent state (C or D) is most likely to be reached
first, given each possible (transient) starting state. (2) Find vector w above and use it to
give the expected time until leaving the transient states given each possible starting state.

P =

A
B
C
D


1/2 1/3 1/6 0
1/5 1/5 0 3/5
0 0 1/2 1/2
0 0 0 1


Ans:

(1) Using the formulas above, and a computer algebra system like Maple or wxMaxima or
Mathematica,

U = (I −Q)−1R =

[
1
2
−1

3

−1
5

4
5

]−1 [1
6

0
0 3

5

]
=

[
12
5

1
3
5

3
2

] [
1
6

0
0 3

5

]
=

[
2
5

3
5

1
10

9
10

]
.

Again, the rows of U (like R) correspond to states A and B, and the columns to states C and
D. The entries of U , uij, are the probability of starting in the ith transient state and leaving
via hitting the jth recurrent state before any other recurrent state. Therefore the 1st row of
U tells us it’s one-and-a-half times as likely to hit D before C, starting from state A, but 9
times as likely to hit D first starting at B.

(2) Using g(i) = 1 as above, the expected times spent in the transient states are give by

w =

[
12
5

1
3
5

3
2

] [
1
1

]
=

[
17
5
21
10

]
Thus, the expected time to reach a recurrent state starting from the first transient state
(state A) is τ1 = 3.4 time steps, while the expected time starting from the second state (state
B) is slightly shorter: τ2 = 2.1 time steps.
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