MATH 420 HW #4

Instructions: A printed copy of your homework should be handed in at **the start of class** the day it is due. Supplementary electronic files (e.g. R scripts or wxMaxima files;) should be emailed to the instructor prior to class with file name format LASTNAME-HWX.EXT

Your assignment is to provide a nicely written-up derivation of the system of ODEs below starting from a discrete-time stochastic model.

Background: Suppose there are N_0 atoms of radioactive Uranium. Over time interval Δt each can decay with probability (w.p.) $\lambda \Delta t$.

Let U(t) be the number of Uranium atoms. The number lost during time interval $[t, t + \Delta t]$ is approximately a binomial *random variable* with parameters n = U(t) and $p = \lambda \Delta t$. Thus, the *expected number* lost is $n p = \lambda U(t) \Delta t$.

Assuming U_0 is large, then the Law of Large Numbers (LLN) allows us to claim $U(t + \Delta t) - U(t) \approx -\lambda U(t) \Delta t$. Taking $\Delta t \to 0$ we can derive the **mean field** model:

$$\frac{dU(t)}{dt} = -\lambda U(t), \qquad U(0) = U_0$$

Now instead suppose there are U_0 atoms of radioactive Uranium, and these can decompose into Thorium and then again decompose into Protactinium. Specifically, over time interval Δt , Uranium atoms can decay w.p. $\lambda_{\alpha} \Delta t$ to Thorium and an α particle ⁴₂He. Thorium can then decay via loss of a β particle (positron) to Protactinium w.p. $\lambda_{\beta} \Delta t$.

Let T(t) be the number of thorium atoms, and P(t) the number of protactinium atoms.

Assignment: Derive the following UTP model

$$\frac{dU(t)}{dt} = -\lambda_{\alpha}U(t)$$
$$\frac{dT(t)}{dt} = \lambda_{\alpha}U(t) - \lambda_{\beta}T(t)$$
$$\frac{dP(t)}{dt} = \lambda_{\beta}T(t)$$

1. Write a (stochastic) discrete time map (step size Δt) that models the numbers of atoms transitioning states in each time step using Binomial distributions.

Ans: First, let $\widetilde{U}(t)$, $\widetilde{T}(t)$ and $\widetilde{P}(t)$ be the stochastic variables representing the amounts of Uranium, Thorium and Protactinium at time t. Let $X_1(t)$ be the number of atoms at time t that transition from Uranium to Thorium in $(t, t + \Delta t]$ and let $X_2(t)$ be the number of atoms at time t that transition from Thorium to Protactinium in $(t, t + \Delta t]$.

Then $X_1(t) \sim \text{Binomial}(\widetilde{U}(t), \lambda_{\alpha} \Delta t)$ and $X_2(t) \sim \text{Binomial}(\widetilde{P}(t), \lambda_{\beta} \Delta t)$, and

$$\widetilde{U}(t + \Delta t) = \widetilde{U}(t) - X_1(t)$$

$$\widetilde{T}(t + \Delta t) = \widetilde{P}(t) + X_1(t) - X_2(t)$$

$$\widetilde{P}(t + \Delta t) = \widetilde{T}(t) + X_2(t)$$

2. Use the LLN to find the corresponding mean-field map.

Ans: If we let U(t), T(t), and P(t) be the expected values of $\tilde{U}(t)|\tilde{U}(t-\Delta t), \tilde{T}(t)|\tilde{T}(t-\Delta t)$ and $\tilde{P}(t)|\tilde{P}(t-\Delta t)$, respectively, then taking the expected value of the above equations and approximating using the Law of Large Numbers yields

$$U(t + \Delta t) = U(t) - \lambda_{\alpha} \Delta t U(t)$$

$$T(t + \Delta t) = P(t) + \lambda_{\alpha} \Delta t U(t) - \lambda_{\beta} \Delta t T(t)$$

$$P(t + \Delta t) = T(t) + \lambda_{\beta} \Delta t T(t)$$

3. Take the limit as $\Delta t \to 0$ to find the continuous time (ODE) approximation of this mean-field discrete map, i.e., the above system of ODEs.

Ans: Rearranging the above equations yields

$$\frac{U(t + \Delta t) - U(t)}{\Delta t} = -\lambda_{\alpha}U(t)$$
$$\frac{T(t + \Delta t) - P(t)}{\Delta t} = \lambda_{\alpha}U(t) - \lambda_{\beta}T(t)$$
$$\frac{P(t + \Delta t) - T(t)}{\Delta t} = \lambda_{\beta}T(t)$$

Taking the limit as $\Delta t \to 0$ yields the desired UTP model.