
MATH 420 Homework #5 Due Mon, 4 Dec 2017

Recall that for 1D systems ẋ = f(x), the local asymptotic stability of an equilibrium point
x∗ (f(x∗) = 0) is determined by the slope of f(x) at that point: if f ′(x∗) is negative then x∗
is LAS, but if f ′(x∗) is positive then x∗ is unstable.

For systems of multiple equations, where ẋ = f(x) for x ∈ Rn and f : Rn → Rn is
differentiable, we determine the stability of an equilibrium point x∗ = (x1∗, x2∗, . . . , xn∗) by
determining whether or not all of the eigenvalues λi of the Jacobian Matrix J = (∂fi(x)/∂xj)
have negative real part. In practice, we do this using computer algebra systems like Maxima,
Mathematica or Maple to check the Routh-Hurwitz Criteria which allows us to assess whether
or not all λi have negative real part (or not) without explicitly calculating the eigenvalues.

The Routh-Hurwitz Criteria are a set of necessary and sufficient conditions for whether or not
the roots of a polynomial have negative real part. You may recall that the characteristic
equation of an n xn matrix A is the nth-order polynomial p(x) = det(A− x I), and its roots
are by definition the eigenvalues of A.

Routh-Hurwitz Criteria

All roots of the polynomial (with real coefficients ci)

p(x) = cn + cn−1 x+ · · ·+ c1 x
n−1 + xn

have negative real parts if and only if the determinants of all the corresponding
Hurwitz matrices are positive. This result provides an algorithm for computing
stability criteria, which gives these equivalent conditions for small values of n:

n = 2 ci > 0

n = 3 ci > 0, c1 c2 > c3

n = 4 ci > 0, c1 c2 c3 > c23 + c21 c4

Further reading: See Meinsma (1995), Gantmacher (1989), or Ch. 4 of Introduction
to Mathematical Biology by Allen (2007).

Exercise 1: Find all equilibria of the following 1D models, and determine their stability
(and/or state any parameter conditions that would yield a stable eq. pt.) by calculating
f ′(x∗) and inferring whether or not the equilibrium point is locally asymptotically stable.

1. ẋ = 1− a x

2. ẋ = (1− a x)(x− ε)

3. ẋ = cos(x)
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http://wwwhome.math.utwente.nl/~meinsmag/reports/routh.html


Exercise 2: Find all equilibria for the following system of equations, and determine each of
their stability, by following the steps below. Assume a, r > 0 and θ > 1

ẋ = f(x, y) = 1− r x

ẏ = g(x, y) = r x− λ yθ

1. Solve ẋ = 0 and ẏ = 0 for x and y.

2. Next we construct the Jacobian matrix by hand.
(a) Find the following partial derivatives:

∂f

∂x
=

∂f

∂y
=

∂g

∂x
=

∂g

∂y
=

(b) Find the Jacobian at each equilibrium point by evaluating

J =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

at each equilibrium point. Simplify as much as possible.
3. Either apply the Routh-Hurwitz criteria to determine equilibrium stability, or use the

following shortcut for 2D systems:

If A =

[
a b
c d

]
then it’s Trace (Tr(A) = a+ d) and Determinant (Det(A) = a d− c b)

are related to it’s eigenvalues λi by Tr(A) = λ1 + λ2 and Det(A) = λ1 λ2. Therefore
the eigenvalues have negative real part iff

Tr(A) < 0 and Det(A) > 0.

2



Exercise 3: The Lorenz equations are a simplification of a fluid dynamics model, that were
derived to illustrate chaotic dynamics by Ed Lorenz in 1963.

ẋ =σ (y − x) (1a)

ẏ =r x− y − x z (1b)

ż =x y − b z (1c)

The Routh-Hurwitz criteria can be used to find stability conditions (i.e., conditions on the
values of parameters σ > 0, b > 0, r > 1) for the equilibrium point

(x∗, y∗, z∗) =
(√

b r − b,
√
b r − b, r − 1

)
as follows:

The Jacobian for a general point (x, y, z) for equations (1a-1c) is

J =

 −σ σ 0
r − z −1 −x
y x −b


By evaluating the Jacobian at the given equilibrium point (x∗, y∗, z∗) then finding its charac-
teristic polynomial equation we can apply the Routh-Hurwitz criteria.

J∗ =

 −σ σ 0

1 −1 −
√
b · r − b√

b · r − b
√
b · r − b −b


Finding the characteristic polynomial and dividing by the leading coefficient (so that the x3

term has coefficient 1) yields

x3 + (σ + b+ 1) · x2 + (b · σ + b · r) · x+ 2 · b · r · σ − 2 · b · σ = 0

Therefore, c3 = 2b r σ − 2b σ, c2 = b σ + b r and c1 = σ + b+ 1 applying the criteria above,
the Routh-Hurwitz criteria are that each coefficient is positive (which is always true for the
given constraints r > 1, b, σ > 0) and that

(σ + b+ 1)(σ + r)b > 2b σ (r − 1)

which reduces to
(σ + b+ 1)(σ + r) > 2σ (r − 1).

Hence, the given equilibrium point is stable whenever (1) it exists in the positive real orthant
(i.e., x∗, y∗, and z∗ are all positive real numbers) and (2) whenever

(σ + b+ 1)(σ + r) > 2σ (r − 1).
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http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2


Interestingly, when this equilibrium point is unstable, these equations can exhibit chaos:
dynamics characterized by two trajectories near the asymptotic attractor will eventually
diverge regardless of how close their initial conditions. In this exercise, you will modify some
R code to illustrate this divergence of trajectories near the chaotic attractor in the Lorenz
system.

(1) Modify the code lorenz.R on the website to create a 3x3 panel of figures: The first
column are the x, y, and z trajectories given in the code. The second column is the same three
curves but for a different numerical solution of the model that begins at slightly different
initial conditions: Y 0 = c(x = 10.01, y = 10.99, z = 12.01). The third column is the two
state-space plots (two versions of the scatterplot3d plot in the code, one for each trajectory)
followed by a plot that shows the Euclidian distance between the two trajectories at each
time point, illustrating whether or not the trajectories diverge over time.

Submit a hard copy of this figure, and an electronic copy of your code, to receive full points
for this problem. Please feel free to change colors, etc. or otherwise make your code and
figure unique so that it doesn’t look like anyone else’s in class.
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