
CONVERGENCE CONCEPTS & LAWS OF LARGE NUMBERS

Before discussing the Central Limit Theorem (CLT), Weak Law of Large Numbers (WLLN)
and Strong Law of Large Numbers (SLLN) it helps to know some different convergence
concepts that exist in probability (and measure theory).

We begin with two results that help us bound probabilities when only the mean is known:

Markov Inequality: For any non-negative valued r.v. Y with E(Y ) = µ, then for a > 0

P (Y ≥ a) ≤ E(Y )

a
.

Proof (finite-variance, continuous case):

E(Y )

a
=

1

a

∫ ∞
0

y f(y) dy ≥ 1

a

∫ ∞
a

y f(y) dy ≥ 1

a

∫ ∞
a

a f(y) dy = P (Y ≥ a) �

Chebychev Inequality: For r.v. X with E(X) = µ and V ar(X) = σ2 <∞, then for any
k > 0 the probability that X deviates more than k from the mean is bounded by

P (|X − µ| ≥ k) ≤ σ2

k2

Sketch of Proof: Apply the Markov Inequality using Y = (X − µ)2 and a = k2.

CONVERGENCE CONCEPTS IN PROBABILITY

Definition: The r.v.s Xn converge in distribution to r.v. X (Xn
D→ X) if

lim
n→∞

FXn(x) = FX(x)

for all x where FX(x) is continuous. This is point-wise convergence of cdfs.

Definition: The r.v.s Xn converge in probability to r.v. X (Xn
P→ X) if, for all ε > 0,

lim
n→∞

P (|Xn −X| ≥ ε) = 0 ⇔ lim
n→∞

P (|Xn −X| ≤ ε) = 1.

This convergence of probability values is in measure theory called convergence in measure.

Definition: The r.v.s Xn converges almost surely to r.v. X (Xn
a.s.→ X) if for all ε > 0

P
(

lim
n→∞

|Xn −X| ≤ ε
)
≡ P

(
{all ω ∈ S such that lim

n→∞
|Xn(ω)−X(ω)| ≤ ε}

)
= 1

In measure theory, almost everywhere means a statement holds true for all but a set of
measure zero. Thinking of random variables as functions on our sample space, this is just
pointwise convergence of the random variables except perhaps on some set of measure zero.

Theorem: If Xn converges almost surely to X, then it also converges in probability. If Xn

converges in probability to X, the it also converges in distribution.
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Example 1 (Convergence in probability, but not almost surely.)

Let U be uniform on [0,1], and define the sequence of random variables Yn to all depend
directly on U according to Yn = U+1An(U) where intervals An are defined as the nth interval
in the sequence [0,1/2], [1/2,1], [0,1/3], [1/3,2/3], [2/3,1], [0,1/4],... That is, for observation
U = u, Yn = u + 1 if u ∈ An, otherwise Yn = u. Note these r.v.s Yn are not independent,
since each depends directly on U ! Observing that, as n→∞, the width of interval An → 0,
it follows that Yn converges in probability to U since

lim
n→∞

P (|Yn − U | ≥ ε) = lim
n→∞

P (U ∈ An) = 0.

But for a given outcome U = u, Yn(u) never converges since for any N > 0 there is always
some k > N where Yk(u) = 1 + u.
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Since |Yn − U | converges nowhere on [0,1],

P
(

lim
n→∞

|Yn − U | ≤ ε
)

= P (∅) = 0 6= 1

That is, there is no almost sure convergence.

Example 2 (Convergence in distribution, but not in probability.)

Let X be a standard Normal r.v. (E(X) = 0, V ar(X) = 1). Let Xn = −X for all n. Then
all Xn and X have the same distribution (i.e., FXn(x) = FX(x) for all x and n), so trivially
Xn converges in distribution to X. However, for ε > 0, symmetry gives that

P (|Xn −X| ≥ ε) = P (|2X| ≥ ε) = P (|X| ≥ ε/2) = P

(
X /∈

[
−ε
2
,
ε

2

])
.

Since P
(
X /∈

[−ε
2
, ε
2

])
> 0 for all ε > 0, it follows that

lim
n→∞

P (|Xn −X| ≥ ε) = P

(
X /∈

[
−ε
2
,
ε

2

])
> 0.

Therefore Xn does not converge in probability to X.
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Weak Law of Large Numbers (WLLN): Let Xi be iid with mean µ. Then Xn =
∑n

i=1Xi

converges in probability to µ, i.e., Xn
P→ µ. That is, for all positive ε near zero,

lim
n→∞

P (|Xn − µ| ≥ ε) = 0 ⇔ lim
n→∞

P (|Xn − µ| ≤ ε) = 1.

Proof (when V ar(X) = σ2 < ∞): Apply the Chebychev Inequality. This was first proven
in the 1700s by Bernoulli, and incrementally generalized by Markov then Chebychev.

Strong Law of Large Numbers (SLLN): Let Xi be iid with mean µ, and let Xn =∑n
i=1Xi. Then Xn converges almost surely to µ. That is, for all positive ε near zero,

P
(

lim
n→∞

|Xn − µ| ≥ ε
)

= 0 ⇔ P
(

lim
n→∞

|Xn − µ| ≤ ε
)

= 1.

NOTE: Borel gave the first proof of the SLLN, 200 years later, in 1909. It was incrementally
improved by Cantelli, Khintchine (who named it the SLLN) and Kolmogorov (in the 1930s).

Weak vs Strong: Accordingly, almost sure convergence is called a stronger form of con-
vergence than convergence in probability, and convergence in distribution is even more weak.

NOTE: The WLLN and SLLN basically both state that the average of n iid random vari-
ables (with mean µ < ∞) converges to µ as n → ∞. The Weak LLN states this in the

weaker form (Xn
P→ µ), while the Strong LLN states this in the (stronger) form (Xn

a.s.→ µ).

CENTRAL LIMIT THEOREM

Classic CLT (Lindberg-Levy): Suppose random variables Xn are iid with finite mean µ
and finite variance σ2. Then the quantity

Sn =

√
n

σ

(
1

n

(
n∑
i=1

Xi

)
− µ

)

converges in distribution to a standard Normal r.v., i.e., Sn
D→ N (0, 1).

NOTE: Other CLTs relax the iid assumptions, but require additional conditions that must
be met. The Lyapunov CLT, for example, relaxes the assumption of identical distributions:

CLT (Lyapunov): For independent random variables Xn, each with finite mean E(Xn) =
µn and variance V ar(Xn) = σ2

n, define sn =
√∑n

i=1 σ
2
i . The quantity

Sn =
1

sn

n∑
i=1

(Xi − µi)

converges in distribution a standard Normal if the following condition holds for some δ > 0
(usually checking δ = 1 is all it takes):

lim
n→∞

1

s2+δn

n∑
i=1

E
(
|Xi − µi|2+δ

)
= 0.
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NORMAL (GAUSSIAN) DISTRIBUTION

Normal (Gaussian) distribution. Continuous random variable X has a normal distribu-
tion with mean µ and variance σ2 if its pdf is of the form:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

where µ and σ2 are real valued constants. If X has pdf as above, we denote it: X ∼ N(µ, σ2).
The mgf of X is MX(t) = eµt+σ

2t2/2, for any real t.

The normal pdf is bell shaped and centered around the mean µ. There is a special Normal
distribution with mean 0 and variance 1, called standard normal distribution, and denoted
by Z ∼ N(0, 1). The standard normal pdf is

f(z) =
1√
2π
e−

x2

2 .

The values of the standard normal cdf are tabulated. To find probabilities related to general
normal random variables, use the following fact:

Theorem. If X ∼ N(µ, σ2), then Z = X−µ
σ
∼ N(0, 1).

Theorem: Linear combinations of independent normal r.v.s are themselves normal.

1. Let X1 ∼ N(µ1, σ
2
1), and X2 ∼ N(µ2, σ

2
2), with X1 and X2 independent. Then X1 ±

X2 ∼ N(µ1 ± µ2, σ
2
1 + σ2

2), and more generally:

2. LetXi ∼ N(µi, σ
2
i ), for i = 1, . . . , n, andXi’s ind. Then Y =

∑n
i=1Xi ∼ N(

∑n
i=1 µi,

∑n
i=1 σ

2
i ),

and

3. For any real numbers a1, a2, . . . an, Y =
∑n

i=1 aiXi ∼ N(
∑n

i=1 aiµi,
∑n

i=1 a
2
iσ

2
i ).

4. Let Xi ∼ N(µ, σ2) iid for i = 1, . . . , n. Then X̄ ∼ N(µ, σ2/n).

Normal Approximation to Binomial. Let X ∼ Bin(n, p) and Y ∼ N(np, np(1 − p)).
Then for large n

P (a ≤ X ≤ b) ≈ P (a ≤ Y ≤ b).

Continuity correction for the normal approximation to binomial. To ”correct” for
the fact that binomial is discrete and normal is a continuous distribution, we do the following
correction for continuity: P (X = x) ≈ P (x− 0.5 < Y < x+ 0.5).
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