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Model Framework

The GLM is described by three components:

1. The random component specifies the conditional distribution of
yi |~xi and is typically a member of the exponential family of
distributions (Normal, binomial, Poisson, Negative-binomial,
etc.) but other distributions are possible.

2. We call our linear sum of predictors the linear predictor, and
denote it as ηi = β0 +

∑p
j=1 βj xij

3. We call the transformation that links the expected response
values µi = E (yi |~x) and the linear predictor ηi the link
function: g(µi) = ηi . This link function is assumed to be
smooth (differentiable) and invertible. It’s inverse g−1 is often
called the mean function since µi = g−1(ηi).



GLM vs MLR

Recall the MLR model with untransformed response values can be
written as

yi = β0 +
p∑

j=1
βj xij + εi .

In that case, we model E (g(yi)) as a linear sum of xi values, and
further assume Normal errors with constant variance.

Consider, for now, the simple untransformed case (i.e., g is the
identity function).



GLM vs MLR

One could pose the MLR model as a GLM (not to be confused with
a General Linear Model) as follows:

1. The random component is Normally distributed.
2. The linear predictor is ηi = β0 +

∑p
j=1 βj xij (nothing new

here!)
3. The link function is the identity function:

g(E (yi)) = E (yi) = ηi



GLM vs MLR

Note that transforming Y values under MLR is different than
specifying a non-identity link function!

GLMs model g(E (yi)), the transformed expecation of the response,
using the linear predictor. This gives more flexibility to apply
linearizing transformations without affecting the distribution about
that trend. For example, compare the two models by comparing yi
values and inverse-transforms:

MLR: yi = g−1(ηi + εi)

GLM: yi = g−1(ηi) + εi

This distinction often makes GLMs preferrable over MLR.



Parameter Estimation, etc.

Parameter estimation is done via Maximum Liklihood, and most of
the diagnostics for multiple linear regresion carry over to GLMs.

For more information, please see Ch. 15 of Applied Regression
Analysis & Generalized Linear Models by John Fox.
http://www.sagepub.com/sites/default/files/
upm-binaries/21121_Chapter_15.pdf

http://www.sagepub.com/sites/default/files/upm-binaries/21121_Chapter_15.pdf
http://www.sagepub.com/sites/default/files/upm-binaries/21121_Chapter_15.pdf


Example: Logistic Regression (Sheather, Ch. 8)

A common form of response data are counts of a particular type of
outcome among m trials. For example, the number of individuals in
a sample with a specific genotype. In such cases, the data are best
modeled using a binomial distribution, not a Normal distribution,
using logistic regression.

E (Y |x) ∼ binom(m, θ)



Example: Logistic Regression (Sheather, Ch. 8)

Here the parameter of interest is p (or θ) – the probability of a
success on each of our n (or m) trials. Since m is known and not a
parameter that needs to be estimated, the goal is to estimate θ as a
function of our linear predictor. In logistic regression, this is done by
assuming

E (Y |X ) = mθ = m exp(ηi)
1 + exp(ηi)

= m
1 + exp(−ηi)

Thus, a little algebra gives that

ηi = log
(

θ(x)
1− θ(x)

)

We call the right side of that equation the logit function, and
θ/(1− θ) the odds.



Example: Logistic Regression (Sheather, Ch. 8)

To see how this can be cast as a GLM, note that:

1. The distribution is binomial.
2. The relationship between the mean (let’s use E(yi/m = θi))

and linear predictor ηi is given by the logit function

ηi = g(θ) = log
(

θ(x)
1− θ(x)

)
Exercise: Work through the examples from Sheather, Ch. 8. (Are
there alternative link functions?)


