Diagnostics & Remedial Measures for SLR (Ch 3)

Week 6 – Tuesday

Applied Regression Analysis (STAT 757)

Paul J. Hurtado

23 Feb, 2016
Checking Assumptions

Remember: Estimates, confidence intervals, p-values, etc. are all meaningless if you’re using the wrong model!

Diagnostics help identify violations of your model assumptions.

SLR Model Assumptions:

1. All data follow $Y|X = x_i \sim N(\beta_0 + \beta_1 x_i, \sigma)$, hence $E(Y|X = x_i) = \beta_0 + \beta_1 x_i$
2. Normal errors: $e_i \sim N(0, \sigma)$
3. Independent errors e_i
4. $\text{Var}(Y|X = x_i) = \text{Var}(e_i) = \sigma^2$

Many problems lead to outliers and high leverage points.
Residuals $\hat{e}_i = y_i - \hat{y}_i \approx e_i$
Standardized Residuals

Recall that $e_i \sim N(0, \sigma)$, which means that standardizing $z_i = e_i/\sigma$ (by dividing by the standard deviation) would yield values that follow a Normal(0,1) distribution (if we knew σ!):
Leverage & “Hat” values \((h_{ij})\)

Observe that

\[
\hat{y}_i = \sum_{j=1}^{n} h_{ij} y_j
\]

where

\[
h_{ij} = \frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{\sum_{k=1}^{n} (x_k - \bar{x})^2},
\]

We call \(h_{ii}\) the leverage of the \(i\)th data point.
Leverage & “Hat” values \((h_{ij})\)

Observe that

\[
\hat{y}_i = \sum_{j=1}^{n} h_{ij} y_j
\]

where

\[
h_{ij} = \frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{\sum_{k=1}^{n} (x_k - \bar{x})^2}, \quad \sum_{j=1}^{n} h_{ij} = 1,
\]

We call \(h_{ii}\) the leverage of the \(i\)th data point. Note \(h_{ii} = \frac{2}{n}\). A high leverage point is 2x that mean:

\(h_{ii} > \frac{4}{n}\).
Leverage & “Hat” values \((h_{ij})\)

Observe that

\[
\hat{y}_i = \sum_{j=1}^{n} h_{ij} y_j
\]

where

\[
h_{ij} = \frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{\sum_{k=1}^{n} (x_k - \bar{x})^2}, \quad \sum_{j=1}^{n} h_{ij} = 1, \quad \text{and} \quad \sum_{i=1}^{n} h_{ii} = 2
\]
Leverage & “Hat” values \((h_{ij})\)

Observe that

\[
\hat{y}_i = \sum_{j=1}^{n} h_{ij} y_j
\]

where

\[
h_{ij} = \frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{\sum_{k=1}^{n}(x_k - \bar{x})^2}, \quad \sum_{j=1}^{n} h_{ij} = 1, \quad \text{and} \quad \sum_{i=1}^{n} h_{ii} = 2
\]

We call \(h_{ii}\) the leverage of the \(i^{th}\) data point.

Note \(\bar{h}_{ii} = \frac{2}{n}\). A high leverage point is 2x that mean: \(h_{ii} > \frac{4}{n}\).
“Hat” values \((h_{ij})\)

Side Note: These “hat” values form a matrix \(H\) which gives

\[
\hat{y} = H y
\]

and these values show up in many places!

- \(\text{Var}(\hat{y}_i) = \sigma^2 h_{ii}\)
- Alternative definition: \(h_{ij} = \frac{\text{cov}(\hat{y}_i, y_j)}{\text{var}(y_j)}\)
- Residuals, in matrix notation: \(r = (I - H)y\)
- Properties: \(H\) is symmetric, \(H^2 = H\), \(HX = X\)
- Similar \(H\) matrices for other models may not have all these properties.

Want more? See online resources and publications such as

Hoaglin and Welsch. 1978. The Hat Matrix in Regression and ANOVA.

Standardized Residuals

Recall $e_i / \sigma \sim \text{Normal}(0, 1)$, **BUT** we don’t know σ!

Using our estimate, S, in it’s place (and some algebra to show that $\text{Var}(\hat{e}_i) = \sigma^2 (1 - h_{ii})$) yields **standardized residuals** r_i:

$$r_i = \frac{\hat{e}_i}{S \sqrt{1 - h_{ii}}}$$

These can be more informative to look at than residual plots, especially if high leverage points exist.
Normal Quantile-Quantile Plots

In place of a **Shapiro-Wilk** test, plot Standardized Residuals versus the Expected Values of the Order Statistics for a Normal(0,1) distribution. See `shapiro.test()` & `qqnorm()`.

```r
qqnorm(fit1$residuals)
```
Leave-one-out Diagnostics

Another approach to identifying problem data points (with problematic influence) is to compare estimates with and without them. For example, if $\hat{y}_{j(i)}$ is the estimate of \hat{y}_j with the j^{th} data point removed...

Cook’s Distance:

$$D_i = \frac{\sum_{i=1}^{n}(\hat{y}_{j(i)} - \hat{y}_j)^2}{2S^2} = \ldots = \frac{r_i^2}{2} \frac{h_{ii}}{1 - h_{ii}}$$

Roughly speaking, scrutinize points with $D_i > \frac{4}{n-2}$ or values that deviate markedly from the other distances.
Summary Remark

“Bad” leverage points are **high leverage** points that are also **outliers** – they signal a problem with your model!

The two main approaches to fixing that problem:

1. **Omit the data point** from the data set, or
2. **Redo your analysis using a more appropriate model.**
 This is often the preferred approach.