
CONTENTS 1

An introduction to programming in R

Compiled by Paul Hurtado1

University of Nevada, Reno
Department of Mathematics and Statistics

Last update: August 8, 2021

Contents

1 Introduction 3

1.1 Getting and installing R . 4

1.2 Getting and installing Rstudio . 4

1.3 First interactive calculations . 4

2 Scripts and data files 8

2.1 More R basics: functions and their documentation . 12

2.2 Statistics in R . 14

3 Common R Objects: Vectors, Matrices, and Data Frames 15

3.1 Vectors . 15

3.1.1 Functions for creating vectors . 15

3.1.2 Vector addressing . 16

3.2 Matrices . 18

3.2.1 Creating matrices . 18

3.2.2 cbind and rbind . 19

3.2.3 Matrix addressing . 20

3.3 Operations with Matrices and Vectors . 21

3.3.1 Eigenvalues and eigenvectors . 22

3.3.2 Eigenvector scalings . 25

3.3.3 Eigenvalue sensitivities and elasticities . 25

3.4 matrix or Matrix? Classes in R . 26

3.5 Data Frames (and more R tricks) . 28

1Some of these notes are largely copied – verbatim at times – from 2015 and earlier versions of An introduction to
R for theoretical ecology and associated online materials by my Ph.D. advisor Stephen P. Ellner and his co-author John
Guckenheimer. That document can be found online at https://github.com/ellner/DMB-supplements/blob/master/Lab%

20Manual/DynamicModelsLabsInR%3D2019.pdf, and is based in part on course materials by Ellner’s former TAs Colleen
Webb, Jonathan Rowell and Daniel Fink at Cornell, Lou Gross (University of Tennessee) and Paul Fackler (NC State
University), and on the book Getting Started with Matlab by Rudra Pratap (Oxford University Press). Here I also draw
heavily from the documentation supplied with R, and from Ecological Models and Data in R© Benjamin M. Bolker.

https://github.com/ellner/DMB-supplements/blob/master/Lab%20Manual/DynamicModelsLabsInR%3D2019.pdf
https://github.com/ellner/DMB-supplements/blob/master/Lab%20Manual/DynamicModelsLabsInR%3D2019.pdf
http://ms.mcmaster.ca/~bolker/emdbook/

CONTENTS 2

3.5.1 Data frame addressing . 28

3.5.2 More on vector, matrix and data frame addressing . 29

4 Iteration (“Looping”) 31

4.1 For-loops . 31

4.2 While-loops . 34

4.2.1 Logical operators . 35

4.3 Iteration alternatives in R: flavors of apply() . 37

5 Branching: using if and else 38

5.1 Nested if statements . 38

5.2 Functions ifelse() and switch() . 39

6 Writing your own functions 41

7 Solving differential equations 43

7.1 Always use lsoda! Except when you shouldn’t... 44

7.2 The logs trick . 45

7.3 Additional arguments in lsoda . 46

8 Optimization and fitting models to data 47

8.1 What to optimize? . 49

8.2 Controlling the optimization . 50

8.3 How to optimize . 51

9 Document Creation in Rstudio 52

9.1 R Markdown . 52

9.2 knitr/Sweave Documents (LATEX with embedded R code & output) 52

References 53

1 INTRODUCTION 3

1 Introduction

The notes are a modification of materials provided by Stephen P. Ellner, which themselves include
contributions from former TAs Colleen Webb, Jonathan Rowell and Daniel Fink at Cornell, Professors
Lou Gross (University of Tennessee) and Paul Fackler (NC State University), and the book Getting
Started with Matlab by Rudra Pratap (Oxford University Press). They also draw on the documentation
supplied with R. These notes also overlap with the notes on R that accompany the textbook Dynamic
Models in Biology by Steve Ellner and John Guckenheimer (Princeton University Press 2006). You can
freely download that computer lab manual (versions for R and for Matlab) and the various R scripts
and data files mentioned below at:

https://github.com/ellner/DMB-supplements/

These notes are written under the assumption that you have a computer (running R) in front of you. It
is important to work through examples yourselves - i.e. type them into R and see what happens
on your screen - to get the feel and experience of working in R. Exercises or examples in the middle
of a section (here or in the text) should be done immediately when you get to them, making sure you
have them right before moving on. Additional exercises may be given at the end of some sections.

These notes also refer to the text Ecological Models and Data in R by Benjamin Bolker © 2008,
and should follow either the published text or the draft book chapters available as PDFs at

http://ms.mcmaster.ca/~bolker/emdbook/

This document is a constant work-in-progress, so please reach out and contact me (Paul Hurtado) if you
find any errors or have suggestions for improvements.

What is R? R is an object-oriented scripting language that combines

� the S programming language developed by John Chambers (Chambers and Hastie 1988, Chambers
1998).

� a user interface with a few basic menus and extensive help facilities.

� an enormous set of functions for classical and modern statistical data analysis and modeling.

� graphics functions for visualizing data and model output.

R is an open-source project (R Core Development Team 2017) available free via the Web. Originally a
research project in statistical computing (Ihaka and Gentlemen 1996) it is now managed by a team that
includes many well-regarded statisticians, and is widely used by statistical researchers and a growing
number of theoretical biologists. The commercial implementation of the S language (called S-plus) offers
a “point and click” interface that R lacks. However for our purposes this is outweighed by the fact
that S-plus still lacks some essential tools for simulating dynamic models. The standard installation of
R includes extensive documentation, including an introductory manual and a comprehensive reference
manual. At this writing, R mostly follows version 3 of the S language, but some packages are starting
to use version 4 features. These notes refer only to version 3 of S. We also limit ourselves to graphics
functions in the base graphics package; much more is available in packages such as ggplot2, lattice and
grid.

What is Rstudio? Rstudio (www.rstudio.com) is a free, advanced user interface for R. Syntax high-
lighting, autocompleting, document creation, and various other functionalities make Rstudio a very
helpful user interface that can speed up the learning process for new R users. I strongly recommend that
all of your work in R be done using Rstudio.

https://github.com/ellner/DMB-supplements/
http://ms.mcmaster.ca/~bolker/emdbook/
https://www.rstudio.com

1 INTRODUCTION 4

1.1 Getting and installing R

The main sources for R are CRAN (http://www.cran.r-project.org) and its mirrors. You can get
the source code, but most users will prefer a precompiled version. To get one from CRAN, click on
the link for your OS, continue to the folder corresponding to your OS version, and find the appropriate
download file for your computer.

For Windows or OS X, R is installed by launching the downloaded file and following the on-screen
instructions. At the end you’ll have an R icon on your desktop that can be used to launch the program.
Installing versions for LINUX or UNIX is more complicated and idiosyncratic (which will not bother the
corresponding users), but many LINUX distributions include a fairly up-to-date version of R.

During installation, it’s common to select a “custom” install and change the default setting from SDI
(single window with multiple subwindows) to MDI (multiple windows). This allow R’s command and
graphics windows to move independently on the desktop, and you can also change this in R by modifying
the GUI preferences in the drop-down menu.

This document was written on a Windows PC and sometimes refers to Windows-specific aspects of R;
please let me know about any OS-related issues so I can correct them.

1.2 Getting and installing Rstudio

Rstudio can be downloaded for free from https://www.rstudio.com/, and should be installed after R.
If you are interested in using Rstudio to create professional looking documents with nicely formatted
equations and R output, you should also install a LATEXdistribution (e.g., MikTeX on Windows PCs)
and then install Rstudio. We’ll talk more about document creation in section 9. See the Resources page
on the Rstudio website for additional helpful cheatsheets, examples, and tutorials.

1.3 First interactive calculations

When R is launched it opens the console window. This has a few basic menus at the top, whose names
and content are OS-dependent; check them out on your own. The console is where you enter commands
for R to execute interactively, meaning that the command is executed and the result is displayed as soon
as you hit the Enter key. For example, at the command prompt >, type in 2+2 and hit Enter; you will
see

> 2+2

[1] 4

To do anything complicated, the results from calculations have to be stored in variables. For example,
type a=2+2; a at the prompt and you see

> a=2+2; a

[1] 4

The variable a has been created, and assigned the value 4. The semicolon allows two or more commands
to be typed on a single line; the second of these (a by itself) tells R to print out the value of a. By
default, a variable created this way is a vector (an ordered list of numbers); in this case a is a vector
length 1, which acts just like a number.

There are some rules for giving names to variables:

http://www.cran.r-project.org
https://www.rstudio.com/

1 INTRODUCTION 5

� Variable names in R must begin with a letter, and followed by alphanumeric characters. Long
names can be broken up using a period, as in very.long.variable.number.3.

� Do not use the underscore character (’ ’) or blank space as a separator in variable names (R will
probably give you an error message if you do).

� R is case sensitive: Abc and abc are not the same variable.

Calculations are done with variables as if they were numbers. R uses +, -, *, /, and ^ for addition,
subtraction, multiplication, division and exponentiation, respectively. For example enter

> x=5; y=2; z1=x*y; z2=x/y; z3=x^y; z2; z3

and you should see

[1] 2.5

[1] 25

Even though the values for x, y were not displayed, R “remembers” that values have been assigned to
them. Type > x; y to display the values.

The ↑ key recalls previous commands to the prompt, so they can be corrected or modified. For example,
you can bring back the next-to-last command and edit it to

> x=5 y=2 z1=x*y z2=x/y z3=x^y z2 z3

so that commands are not separated by a semicolon. Then press Enter, and you will get an error message.

You can do several operations in one calculation, such as

> A=3; C=(A+2*sqrt(A))/(A+5*sqrt(A)); C

[1] 0.5543706

The parentheses are specifying the order of operations. The command
> C=A+2*sqrt(A)/A+5*sqrt(A)

gets a different result – the same as
> C=A + 2*(sqrt(A)/A) + 5*sqrt(A).

The default order of operations is: (1) Exponentiation, (2) multiplication and division, (3) addition and
subtraction.

> b = 12-4/2^3 gives 12 - 4/8 = 12 - 0.5 = 11.5

> b = (12-4)/2^3 gives 8/8 = 1

> b = -1^2 gives -(1^2) = -1

> b = (-1)^2 gives 1

It’s generally best to use parentheses to specify exactly what you want, such as
> b = 12 - 4/(2^3) .

R also has many built-in mathematical functions that operate on variables (see Table 1). You can
get help on any R function by entering

?functionname

in the console window (e.g., try ?sin). You should also explore the items available on the Help menu,
which include the manuals, FAQs, and a Search facility (’Apropos’ on the menu) that is useful if you
sort of maybe remember part of the the name of what it is you need help on.

1 INTRODUCTION 6

abs(x) absolute value
cos(x), sin(x), tan(x) cosine, sine, tangent of angle x in radians
exp(x) exponential function
log(x) natural (base-e) logarithm
log10(x) common (base-10) logarithm
sqrt(x) square root

Table 1: Some of the built-in mathematical functions in R. Use the Help system to get a more complete
list: ?Arithmetic for simple functions, ?log for logarithmic, ?sin for trigonometric, and ?Special for
special functions.

1 INTRODUCTION 7

Exercise 1.1 : Have R compute the values of

1.
27

27 − 1
and compare it with

1

1− 2−7
.

2. sin(0.25), cos2(0.5) [Note that typing cos∧2(0.5) won’t work!]

3.
27

27 − 1
+ 4 sin(0.25), using cut-and-paste to assemble parts of your past commands.

Exercise 1.2 : Do an Apropos on sin via the Help menu, to see what it does. Next, enter the command
help.search("sin") and see what that does (answer: help.search finds all Help pages that include
’sin’ anywhere in their title or text, most having nothing to do with trig functions. Apropos just finds
functions that have ’sin’ somewhere in their name).

Exercise 1.3 : Work through the Sample Session at the end of Bolker, Chapter 1. Use the help system
(or your neighbor) to do a linear regression of the frog-tadpole data. I have included those simulated
data below so that you can copy/paste them into R. Try entering help.search(”fitting linear models”) or
?lm in the R console.)

frogs = c(1.1, 1.3, 1.7, 1.8, 1.9, 2.1, 2.3, 2.4, 2.5, 2.8, 3.1, 3.3, 3.6, 3.7, 3.9,

4.1, 4.5, 4.8, 5.1, 5.3)

tadpoles = c(2.036982, 2.876231, 3.062528, 3.707180, 3.955385, 4.786983, 4.909395,

4.743633, 5.458514, 5.488370, 6.463224, 6.202578, 7.913878, 6.666590,

7.681658, 8.103331, 8.575123, 9.629233, 9.791165, 9.574846)

Reading2 Assignment: Bolker, Chapter 1

� Read pages 1-4 (1-4)

� Skim pages 4-17 (4-20)

� Read 17-22 (20-26).

2As a convention, book chapters and page numbers will be given for the printed version of the text, followed by the
corresponding chapters and page numbers for online version in parentheses.

2 SCRIPTS AND DATA FILES 8

2 Scripts and data files

Scripts and data files mentioned below refer to supplementary materials for the textbook Dynamic
Models in Biology (https://github.com/ellner/DMB-supplements/). These files can be downloaded
using this link: https://github.com/ellner/DMB-supplements/tree/master/LabRFiles.

Modeling and complicated data analyses are more easily done using scripts: a series of commands stored
in a text file. The Windows and OS X versions of R include a basic script editor (accessed via the file
menu on the console), but you can also use an external text editor.

Most scripts for working with models or data follow a simple pattern:

1. “Setup” statements.

2. Load some data from a file (or keyboard input).

3. Carry out the desired calculations.

4. Output of numerical results and associated graphics, perhaps saving them to files.

For example, a script file might

1. Load some packages, or run another script file that creates some functions (more on functions
later).

2. Read in from a text file the parameter values for a predator-prey model, and the numbers of
predators and prey at time t = 0.

3. Calculate the population sizes at times t = 1, 2, 3, . . . , T .

4. Graph the results and save the graph as a PDF file for including in your term project.

Here is a simple script you can create by opening up Rstudio and creating a new R script by selecting
File > New File > R Script (or you can use the shortcut Ctrl-Shft-N) and entering the following
text into the empty script window (top panel, above the console).

This simple script plots a histogram for a Normally distributed random sample

FYI: Lines that start with a ‘#’ are comments, and are not parsed as R code

Simulate the random sample of size 250 with mean = 12, standard deviation = 1

mysample = rnorm(250, mean=12, sd=1)

Plot the histogram. See R documentation for ‘hist’ and ‘seq’ for details

hist(mysample,breaks=seq(0,20,by=0.5))

Use the icons at the top of the script window in R Studio to run the script. You can also run the script
using Ctrl-shift-enter or run it line-by-line using Ctrl-r or Ctrl-enter to run the current line based
on the cursor location.

For another example, download and open the file Session1.1.R has the commands from the interactive
regression analysis. Important: before working with an example file, create a personal copy in some
location on your own computer. We will refer to this location as your temp folder. If working on a
computer in a computer lab, at the end of your lab session you may want to save files onto flash drive,
email them to yourself, or upload them to your preferred storage in the cloud.

https://github.com/ellner/DMB-supplements/
https://github.com/ellner/DMB-supplements/tree/master/LabRFiles

2 SCRIPTS AND DATA FILES 9

Open your copy of of Session1.1.R, using File/Open Script from the console menu. On the Edit
menu of the script editor, select Run All. This equivalent to copying the whole script and pasting it
into the console window, so the commands are all executed and a graph is displayed with the results.
The source function runs an entire script file without copying it to the console, e.g.

> source("c:/temp/Session1.1.R")

Source’ing can also be done in point-and-click fashion via File/Source R code on the console window.

Another important time saver is loading data from a text file. Get copies of Session1.2.R and Chlorel-
laStart.txt to see an example of how this can be done. In ChlorellaStart.txt, time and algal density
are entered as two columns of a data matrix. Then instead of typing these in by hand, the command

X=read.table("c:/temp/ChlorellaStart.txt")

reads the data file and puts the data values into the variable X. Note that the path to the data file has
to be specified; you need to edit the script so that it uses the correct path to your data file. There are
two ways to specify paths: a single forward slash (as in the source command just above), or a double
backslash as in the read.table command. R understands both of these, but a single backslash won’t
work. In the console window, do

> X

to see that X has been loaded into R as a data matrix with two columns. V1 and V2 are “default”
variable names that R has assigned to the two columns.

The variables are then extracted from X with the commands

tvals=X[,1]; cvals=X[,2];

These are shorthand for “tvals = everything in column 1 of X”, and “cvals = everything in column 2 of
X” (you’ll learn about working with matrices later). The rest is the same as before, with some additions
that specify axis labels and a title.

Exercise 2.1 Make a copy of Session1.2.R under a new name, and modify the copy so that it plots algal
density versus time and does linear regression of algal density on time, and plots the data appropriately.
As in Session1.2.R, use only the first 5 data points for the linear regression. You should end up with
a graph sort of like Figure 1.

Exercise 2.2 Run Session1.2.R, then enter the command plot(fit) in the console. R will tell you
that it is “Waiting to confirm page change” – help it out by clicking on the plot to do a page change.
Next, figure out what just happened by entering ?plot.lm to bring up the Help page for the function
plot.lm that carries out a plot command for an object produced by lm. [This is one example of how
R uses the fact that data analyses are stored as model objects. fit “knows” what kind of object it is
and plot(fit) invokes a function that produces plots suitable for an object produced by lm.] Answer:
R produced a series of diagnostic plots exploring whether or not the fitted linear model is a suitable fit
to the data. In each of the plots, extreme points (the most likely candidates for “outliers”) have been
identified according to their sequence in the data set.

Finally, we want to see how well a discrete logistic model fits the data. To see how that can be done,
look at Session1.3.R. The first sections are familiar: reading in the data and finding the parameter
values. Then comes something new: a “for-loop” to solve the model by stepping forward one day at a
time, starting from our estimated value at t = 0. We’ll learn about this later – for now, just take it for
granted:

2 SCRIPTS AND DATA FILES 10

0 5 10 15 20 25 30

0
10

20
30

40

Time (days)

A
lg

al
 d

en
si

ty

Data from Fussmann et al. (2000) system

Algae= 0.988 + 1.255 t

Figure 1: Graphical summary of regression analysis without log transformation.

xvals=numeric(34); xvals[1]=x0;

for(j in 2:34) {xvals[j]=R*xvals[j-1]*(1-b*xvals[j-1])}

The part to notice now is how to put the data and model solutions onto the same plot:

plot(tvals,cvals,type="p",pch=16,cex=1.5, col="green",xlab="Time (days)",ylab="Algal density");

points(0:33,xvals,type="o",pch=16,cex=1,col="black",lwd=2);

The plot command is familiar with one new wrinkle: the “col” variable sets the plotting color. The
points function is just like plot except that it adds new points (or lines) to the most recent plot, rather
than making a new plot.

Exercise 2.3 The axes in plots are scaled automatically, but sometimes you want to control them
yourself, for example you may want several graphs with exactly the same axes limits. You can control
scaling using the xlim and ylim arguments in plot: the general syntax is

plot(x,y,xlim=c(x1,x2), ylim=c(y1,y2))

For example,
plot(x,y,type="l",xlab="x",ylab="y",xlim=c(1,5), ylim=c(.2,1))

will draw a graph with the x-axis going from 1 to 5, the y-axis from 0.2 to 1.0. The file Chlorella-
Growth.txt has data on the maximum algal growth rate rmax as a function of light intensity L. Write
a script that loads these data into R, and creates a plot of growth rate versus light intensity with the
x axis running from 0 to 120, and the y axis running from 1 to 4. Save this script for use in the next
exercise.

Exercise 2.4 Several separate graphs can be placed within a single figure by using the par function
(short for “parameter”) to adjust the layout of the plot. For example the command

par(mfrow=c(m,n))

divides the plotting area into m rows and n columns. Then as a series of plot commands are used to
draw graphs, successive graphs are placed along the top row from left to right, then along the next row,
and so on. mfcol=c(m,n) has the same effect except that successive graphs are placed down the first

2 SCRIPTS AND DATA FILES 11

0 5 10 15 20 25 30

0
10

20
30

40

Time (days)

A
lg

al
 d

en
si

ty

Figure 2: Discrete logistic model (black curve) fitted to experimental data on Chlorella growth from the Fuss-
mann et al. (2000) experimental system (green points).

column, then down the second column, and so on. par can’t be put inside of a plot() command – it
has to be separate and it has to come before the plots are drawn.

Save a copy of your script from the last exercise under a new name, and modify it as follows. Use
mfcol=c(2,1) to create graphs of (1) growth rate as a function of Light, and (2) log(growth rate) as a
function of log(Light), within one figure. Do the same again, using mfcol=c(1,2).

Exercise 2.5 Use ?par to read about other plot control parameters that can be set using par(). Then
draw a 2 × 2 set of plots, each showing the line y = 5x + 3 with x running from 3 to 8, but with 4
different line styles and 4 different line colors. (Note: if x=3:8, then y=5*x+3 will create the y values
that you need).

Exercise 2.6 Modify one of your scripts so that at the very end it saves the plot to disk. In Windows,
this can be done using savePlot; for other OS’s, you can use dev.print. Use the Help system to find
out about these functions (e.g., ?savePlot). Note that the argument filename in savePlot, and the
argument file in dev.print, can include the path to a folder, for example in Windows you can use

filename="c:/temp/MyFigure2".

Note: These are really exercises in using the Help system, with the bonus that you learn some things
about plot. (Let’s see, we know plot can graph data points...maybe it can also draw a line to connect
the points, or just draw the line and leave out the points. That would be useful. So let’s try ?plot

and see if it says anything about lines...Hey, it also says that graphical parameters can be given

as arguments to plot, so maybe I can set line colors inside the plot command instead of using par all
the time....). The Help system is very helpful once you get used to it (which takes a while), and acquire
the habit of using it often.

2 SCRIPTS AND DATA FILES 12

2.1 More R basics: functions and their documentation

As seen above, R has a nice help system that can be queried in multiple ways. From the command line,
these include:

> help.search("search string")

> ?function.name

> apropos("search string")

To best utilize the help pages for specific functions, let us take a closer look at what functions are and
how they work.

At the command line, type the name of the function read.csv, no parentheses. You should get something
like

> read.csv

function (file, header = TRUE, sep = ",", quote = "\"", dec = ".",

fill = TRUE, comment.char = "", ...)

read.table(file = file, header = header, sep = sep, quote = quote,

dec = dec, fill = fill, comment.char = comment.char, ...)

<environment: namespace:utils>

Typing the function name alone returns code for the function3. Typing ?read.csv loads the help file,
which gives a more useful overview of what arguments you give read.csv, and what values it returns.

Each function takes a set of arguments, which may or may not have a default value, and returns some
object. In this case, read.csv is a function that reads in data from a comma separated file and stores
it as a variable in R. In this case, file is the name of the file to open, header is a logical (true/false)
variable indicating whether or not the first row is data or column names, and so on. Here file has no
default file name, whereas header=TRUE means that if omitted, the function assumes the first row gives
the column names.

See the help for write.csv. One could create a CSV file from the simulated frog-tadpole data from
exercises above using the following command (use file="" to display to the console instead)

> write.csv(data.frame(frogs,tadpoles), file="frog-tadpole.csv", row.names=FALSE)

If you had a CSV file of data without labeled columns in the working directory4, you could load it
into a variable my.data and display the contents to the screen by typing

> my.data = read.csv(file="frog-tadpole.csv");

> my.data

If the first row in the CSV file contained the first row of data instead of column labels, you would use

> my.data = read.csv(file="frog-tadpole.csv", header=F);

> my.data

3Compare this to typing read.csv() and read.csv
4First, type getwd() at the command line to see what your current “working directory” is. If you need to change it,

use setwd(). Next, go to the course website and download the frog-tadpole.csv file to that directory. Edit the directory
name in the example code accordingly.

2 SCRIPTS AND DATA FILES 13

In the first case, the default header=T told read.csv to take the first row as the column names. Variable
names (and thus, column names) can’t start with a number in R. If the column labels had been omitted
from the file, they would have received column names like X1.1 and X2.036981755. In the second case,
if we treated the labels like data, the columns received the default labels V1 and V2. We can change
these by

> names(my.data)

> names(my.data) = c("frogs", "tadpoles");

> my.data

However, it’s always preferable to open the files correctly. When in doubt, or if you run into problems,
loading the help documentation for the function in question should be your first step
towards solving the problem.

Exercise 2.7 : The best way to get a feel for how functions work is to create your own. Here we’ll
create a function square that returns the square of it’s argument, or if no argument is given the default
value is a random integer from 0 and 10. This defines the function:

> square = function(x = round(runif(1,min=0,max=10))) {

> return(x^2);

> }

What happens when you type the following?

> square(12)

> square()

> square

Exercise 2.8 : Plot our data using plot(my.data). Read the help for the plot command, and plot it
with a new title and axis labels of your choosing.

2 SCRIPTS AND DATA FILES 14

2.2 Statistics in R

Some of the important functions and packages for statistical data analysis are summarized in Table
2. The book Modern Applied Statistics with S by Venables and Ripley gives a complete practical
overview. For the basics Maindonald (2004) and Verzani (2002) are available free from CRAN
(www.cran.r-project.org), and you can also find there a complete list of libraries and their contents
(click on Package sources). There is also a large collection of R packages for the analysis of genomic
data distributed at www.bioconductor.org. For the most part, we will not go too deeply into this side
of R - at least until later in the course.

aov, anova Analysis of variance or deviance
lm, glm Linear and generalized linear models
gam, gamm Generalized additive models and mixed models (in mgcv package)
nls Fit nonlinear models by least-squares (in nls package)
lme,nlme Linear and nonlinear mixed-effects models (in nlme package)
foreign Read Data Stored by Minitab, S, SAS, SPSS, Stata, etc
sp tools for spatial data
forecast, zoo time series analysis
reshape2 Reshape data into different formats
plyr More data manipulation tools
boot Functions for bootstrap estimates of precision and significance
multiv Multivariate analysis
survival Survival analysis
tree Tree-based regression
MASS, AER, car Statistics textbook companion packages
nonparametric regression Various functions in numerous libraries including stats (smoothing

splines, loess, kernel), mgcv, fields, KernSmooth, logspline, sm
Rcmdr R Commander: Point-and-click GUI for basic statistics and model

fitting, can import data from SPSS, Minitab or STATA data files

Table 2: A small selection of the functions and add-on packages in R for statistical modeling and data analysis.
There are many more, but you will have to learn about them somewhere else. A number of free manuals are
available at CRAN www.cran.r-project.org.

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 15

3 Common R Objects: Vectors, Matrices, and Data Frames

Understanding how to use vectors and matricies is fundamental to capitalizing on R’s computational
abilities and for doing scientific computing in general. That said, the data frame is also common to work
with in R. In this next section, we get familiar with all three.

3.1 Vectors

Vectors and matrices (1- and 2-dimensional rectangular arrays of numbers) are pre-defined data types
in R. We’ve already seen two ways to create vectors in R:
1. A command in the console window or a script file listing the values, such as

> initialsize=c(1,3,5,7,9,11).
2. Using read.csv():

> my.data=read.csv("frog-tadpole.csv")

(Remember: this only works if the file that you’re trying to read actually exists!)

A vector can then be used in calculations as if it were a number (more or less)

> finalsize=initialsize+1; newsize=sqrt(initialsize); finalsize; newsize;

[1] 2 4 6 8 10 12

[1] 1.000000 1.732051 2.236068 2.645751 3.000000 3.316625

Notice that the operations were applied to every entry in the vector. Similarly, commands like
initialsize-5, 2*initialsize, initialsize/10

apply subtraction, multiplication, and division to each element of the vector. The same is true for

> initialsize^2;

[1] 1 9 25 49 81 121

In R the default is that operations and functions act on vectors in an element by element manner;
anything else (e.g. matrix multiplication) is done using special notation (discussed below). Note: this
is the opposite of Matlab. In Matlab, matrix operations are the default and element-by-element
operations require special notation.

3.1.1 Functions for creating vectors

A set of regularly spaced values can be created with the seq function, whose syntax is
x=seq(from,to,by) or x=seq(from,to)

The first form generates a vector (from,from+by,from+2*by,...) with the last entry not extending
further than to. In the second form the value of by is assumed to be 1 or -1, depending on whether
from or to is larger. There are also two shortcuts for creating vectors with by=1:

> 1:8; c(1:8);

[1] 1 2 3 4 5 6 7 8

[1] 1 2 3 4 5 6 7 8

Exercise 3.1 Use seq to create the vector v=(1 5 9 13), and to create a vector going from 1 to 5 in
increments of 0.2 .

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 16

seq(from,to,by=1) Vector of evenly-spaced values, default increment = 1
seq(from,to,length) Vector of evenly-spaced values with specified endpoints and length
c(u,v,...) Combine a set of numbers and/or vectors into a single vector
rep(a,b) Create vector by repeating elements of a by amounts in b

as.vector(x) Convert an object of some other type to a vector
hist(v) Histogram plot of value in v
mean(v),var(v),sd(v) Estimate of population mean, variance, and standard deviation

based on data values in v

cor(v,w) Correlation between two vectors

Table 3: Some important R functions for creating and working with vectors. Many of these have other
optional arguments; use the help system (e.g. ?cor) for more information.

A constant vector such as (1,1,1,1) can be created with rep function, whose basic syntax is
rep(values,lengths)

For example,

> rep(3,5)

[1] 3 3 3 3 3

rep(values,lengths) can also be used with a vector of values and their associated lengths, for example

> rep(c(3,4),c(2,5))

[1] 3 3 4 4 4 4 4

The value 3 was repeated 2 times, followed by the value 4 repeated 5 times.

Some of the main functions for creating and working with vectors are listed in Table 3. R also has many
functions for creating vectors of random numbers with various distributions, that are useful in simulating
stochastic models. Most of these have a number of optional arguments, which means in practice that
you can choose to specify their value, or if you don’t a default value is assumed. For example,

> rnorm(100)

yields 100 random numbers with a Normal (Gaussian) distribution, mean=0, standard deviation=1. But
> rnorm(100,2,5)

yields 100 random numbers from a Gaussian distribution with mean=2, standard deviation=5. The
existence of default values for some arguments of a function is indicated by writing (for example)
rnorm(n,mu=0,sd=1). Since no default value is given for n, the user must supply one: rnorm()

gives an error message.

Some of the functions for creating length-n vectors of random numbers are listed in Table 4. We will
see soon some examples of using these functions to simulate models with random components to their
dynamics.

Exercise 3.2 Generate a vector of 5000 random numbers from a Gaussian distribution with mean=3,
standard deviation=2. Use hist to visualize the distribution of values, and the functions mean, sd to
estimate the population mean and standard deviation from the “data” values in the vector.

3.1.2 Vector addressing

Often it is necessary to extract a specific entry or other part of a vector. This is done using subscripts,
for example

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 17

rnorm(n,mean=1,sd=1) Gaussian distribution(mean=mu, standard deviation=sd)
runif(n,min=0,max=1) Uniform distribution on the interval (min,max)
rbinom(n,size,prob) Binomial distribution with parameters #trials N=size, probability

of success p=prob.
rpois(n,lambda) Poisson distribution with mean=lambda
rbeta(n,shape1,shape2) Beta distribution on the interval [0, 1] with shape parameters

shape1,shape2

Table 4: Some of the main R function for generating vectors of random numbers. To create random
matrices, these can be reshaped using matrix(). Functions to evaluate the corresponding probabil-
ity distribution functions are also available. For a listing use the Help system (?Normal, ?Uniform,
?Lognormal, etc. for lists of the available functions for each distribution family).

> q=c(1,3,5,7,9,11); q[3]

[1] 5

q[3] extracts the third element in the vector q. You can also access a block of elements using the
functions for vector construction, e.g. to extract the 2nd through 5th elements of q

v=q[2:5]; v

[1] 3 5 7 9

If you enter v=q[seq(1,5,2)], what will happen? Try it and see, and make sure you understand what
happened.

Extracted parts of a vector don’t have to be regularly spaced. For example

> v=q[c(1,2,5)]; v

[1] 1 3 9

Addressing is also used to set specific values within a vector. For example,

> q[1]=12

changes the value of the first entry in q while leaving all the rest alone, and

> q[c(1,3,5)]=c(22,33,44)

changes the 1st, 3rd, and 5th values.

Exercise 3.3 write a one-line command to extract a vector consisting of the second, first, and third
elements of q in that order.

Exercise 3.4 Write a script file that computes values of y =
(x− 1)

(x+ 1)
for x = 1, 2, · · · , 10, and plots y

versus x with the points plotted and connected by a line.

Exercise 3.5 The sum of the geometric series 1 + r + r2 + r3 + ...+ rn approaches the limit 1/(1− r)
for r < 1 as n→∞. Take r = 0.5 and n = 10, and write a one-statement command that creates the
vector G = c(r0, r1, r2, ..., rn). Compare the sum of this vector to the limiting value 1/(1 − r). Repeat
this for n = 50.

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 18

Vector orientation. You may be wondering if vectors in R are row vectors or column vectors (if you
don’t know what those are, don’t worry: we’ll get to it later). The answer is “both and neither”. Vectors
are printed out as row vectors, but if you use a vector in an operation that succeeds or fails depending
on the vector’s orientation, R will assume that you want the operation to succeed and will proceed as if
the vector has the necessary orientation. For example, R will let you add a vector of length 5 to a 5× 1
matrix or to a 1× 5 matrix, in either case yielding a matrix of the same dimensions.

3.2 Matrices

3.2.1 Creating matrices

A matrix is a two-dimensional rectangular array of numbers. Matrices can be created by reading in values
from a data file using read.table, or from a properly formatted .csv spreadsheet file using read.csv.
Matrices of numbers can also be entered by creating a vector of the matrix entries, and then reshaping
them to the desired number of rows and columns using the function matrix. For example

> X=matrix(c(1,2,3,4,5,6),2,3)

takes the values 1 to 6 and reshapes them into a 2 by 3 matrix.

> X

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

By default the values in the data vector are put into the matrix column-wise. You can change this by
using the optional parameter byrow. For example

> A=matrix(1:9,3,3,byrow=T); A

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

R will re-cycle through entries in the data vector, if need be, to fill out a matrix of the specified size. So
for example

matrix(1,50,50)

creates a 50× 50 matrix of all 1’s.

Exercise 3.6 Use a command of the form X=matrix(v,2,4) where v is a data vector, to create the
following matrix X

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 2 2 2 2

Exercise 3.7 Use rnorm and matrix to create a 5× 7 matrix of Gaussian random numbers with mean
1 and standard deviation 2.

Another useful function for creating matrices is diag. diag(v) creates a square matrix with data vector
v on its diagonal – try

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 19

matrix(v,m,n) m× n matrix using the values in v
data.entry(A) call up a spreadsheet-like interface to edit the values in A
diag(v,n) diagonal n× n matrix with v on diagonal, 0 elsewhere
cbind(a,b,c,...) combine compatible objects by binding them along columns
rbind(a,b,c,...) combine compatible objects by binding them along rows
as.matrix(x) convert an object of some other type to a matrix, if possible
outer(v,w) “outer product” of vectors v,w: the matrix whose (i, j)th element is

v[i]*w[j]

iden(n) n× n identity matrix (in boot library)
zero(n,m) n×m matrix of zeros (in boot library)
t(x) transpose the matrix x
dim(X) dimensions of matrix X. dim(X)[1]=# rows, dim(X)[2]=# columns

Table 5: Some important functions for creating and working with matrices. Many of these have additional
optional arguments; use the Help system for full details.

diag(1:3)

and see what happens. diag(v,n) creates an n × n matrix with v on the diagonal, and if necessary it
“recycles” through v to find n values. To see what that means, try

diag(1:3,5); diag(1,6)

to see what they create (and make sure you understand why!)

Finally, one can use the data.entry function. This function can only edit existing matrices, but for
example (try this right now!)

A=matrix(0,3,4); data.entry(A)

will create A as a 3× 4 matrix, and then call up a spreadsheet-like interface in which the values can be
changed to whatever you need.

3.2.2 cbind and rbind

If their sizes match, vectors can be combined to form matrices, and matrices can be combined with
vectors or matrices to form other matrices. The functions that do this are cbind and rbind.

cbind binds together columns of two objects. One thing it can do is put vectors together to form a
matrix:

> C=cbind(1:3,4:6,5:7); C

[,1] [,2] [,3]

[1,] 1 4 5

[2,] 2 5 6

[3,] 3 6 7

Remember that R interprets vectors as row or column vectors according to what you’re doing with them.
Here it treats them as column vectors so that columns exist to be bound together. On the other hand,

> D=rbind(1:3,4:6); D

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

treats them as rows. Now we have two matrices that can be combined.

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 20

Exercise 3.8 Verify that rbind(C,D) works, cbind(C,C) works, but cbind(C,D) doesn’t. Why not?

3.2.3 Matrix addressing

Matrix addressing is like vector addressing except that you have to specify both the row and column, or
range of rows and columns. For example q=A[2,3] sets q equal to 6, which is the (2nd row, 3rd column)
entry of the matrix A that you recently created, and

> A[2,2:3];

[1] 5 6

> B=A[2:3,1:2]; B

[,1] [,2]

[1,] 4 5

[2,] 7 8

There is an easy shortcut to extract entire rows or columns: leave out the limits.

> first.row=A[1,]; first.row

[1] 1 2 3

> second.column=A[,2]; second.column;

[1] 2 5 8

As with vectors, addressing works in reverse to assign values to matrix entries. For example,

> A[1,1]=12; A

[,1] [,2] [,3]

[1,] 12 2 3

[2,] 4 5 6

[3,] 7 8 9

The same can be done with blocks, rows, or columns, for example

> A[1,]=runif(3); A

[,1] [,2] [,3]

[1,] 0.1911789 0.07919515 0.798139

[2,] 4.0000000 5.00000000 6.000000

[3,] 7.0000000 8.00000000 9.000000

(see Table 4 to remind yourself about runif).

Exercise 3.9 Write a script file to do the following. (a) Use runif to construct a 5×5 matrix B of
random numbers with a uniform distribution between 0 and 1. (b) Extract from it the second row, the
second column, and the 3×3 matrix of the values that are not at the margins (i.e. not in the first or last
row, or first or last column). (c) Use seq to replace the values in the first row of B by 2 5 8 11 14.

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 21

3.3 Operations with Matrices and Vectors

A numerical function applied to a matrix acts element-by-element.

> A=matrix(c(1,4,9,16),2,2); A; sqrt(A);

[,1] [,2]

[1,] 1 9

[2,] 4 16

[,1] [,2]

[1,] 1 3

[2,] 2 4

The same is true for scalar multiplication and division. Try 2*A, A/3 and see what you get.

If two matrices (or two vectors) are the same size, then you can do element-by-element addition, sub-
traction, multiplication, division, and exponentiation:

A+B, A-B, A*B, A/B, A^B

NOTE: A^B means each element in A raised to the power given by the corresponding element in B.
This is NOT what A^B means in Matlab. So for example:

if C =

[
1 2
3 4

]
then C∧C =

[
11 22

33 44

]
Matrix-matrix and matrix-vector multiplication are indicated by the special notation %*%. For
example,

> v=1:2; A%*%v

[,1]

[1,] 19

[2,] 36

It’s essential to always remember that element-by-element is the default, because R’s eagerness to make
things work can let errors get by without warning. For example, had you forgotten to ask for matrix-
vector multiplication above, R would make it work anyway:

A*v

[,1] [,2]

[1,] 1 9

[2,] 8 32

Since you inadvertently asked for element-by-element multiplication, that’s what R did. It ran out of
entries in v before it ran out of entries in A, so it “recycled” through the elements of v:[

1 9
4 16

]
∗
[

1
2

]
=

[
1 ∗ 1 9 ∗ 1
4 ∗ 2 16 ∗ 2

]
This can be a big problem because major mistakes don’t get caught by R, you have to find them yourself.

The matrix algebra functions in R are front-ends for the “industry standard” numerical libraries. Some
of these functions are listed in Table 6. Some of these only work on square matrices and will return an
error if A is not square, in particular functions for computing eigenvalues and eivenvectors.

Some functions exist in two versions corresponding to older (LINPACK, EISPACK) and newer
(BLAS,LAPACK,ATLAS) versions of these libraries. How you wind up using which is a lesson in
how R works, and we leave it to the next section.

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 22

outer(v,w) outer product of vectors v and w
solve(A) inverse of matrix A
solve(A,B) solution x of the linear system Ax = b for each column b of the matrix

B
det(A) determinant of the matrix A
norm(A) matrix norm of A (several options)
eigen(A) eigenvalues and eigenvectors
t(A) transpose of A

exp(A) matrix exponential exp(A) =
∑
n>0

An

n! (in package fMultiVar)

mtx.exp(A,n) efficiently compute powers of a matrix An (not element-by-elemnt)
(in package BioDem)

apply(A,margin,fun) apply a function fun to the rows (margin=1) or columns (margin=2)
of matrix A, and return all resulting values

sapply(v,fun) apply a function fun to all elements in vector v, returning a vector of
values

Table 6: Some important functions for matrix-vector numerical calculations. Many of these have addi-
tional optional arguments; use the Help system for full details

3.3.1 Eigenvalues and eigenvectors

In this section we consider only square matrices, for which eigenvalues and eigenvectors are defined.
Recall that if Aw = λw (for A a square matrix, w a nonzero column vector, and λ a real or complex
number) then λ is called an eigenvalue and w is the corresponding eigenvector of A.

If v is a row-vector such that vA = λv, then v is called a left eigenvector of A. The left eigenvalues for
a matrix are the same as the (right) eigenvalues. The left eigenvectors of A are the same as the right
eigenvectors of the transpose t(A).

eigen returns eigenvalues sorted by absolute value, with the dominant eigenvalue (meaning, the one
with the largest absolute value) first. (the general definition of absolute value, which covers both real
and complex numbers, is

|a+ bi| =
√
a2 + b2).

For example,

A=matrix(1:9,3,3); vA=eigen(A); vA;

$values

[1] 1.611684e+01 -1.116844e+00 -9.357342e-17

$vectors

[,1] [,2] [,3]

[1,] -0.4645473 -0.8829060 0.4082483

[2,] -0.5707955 -0.2395204 -0.8164966

[3,] -0.6770438 0.4038651 0.4082483

As with the output from lm (you remember lm . . .) vA is an object composed of two components, whose
names are values and vectors. The “$” is used to extract components of a compound object, for
example vA$values is the values part of vA, a vector consisting of the sorted eigenvalues:

vA$values

[1] 1.611684e+01 -1.116844e+00 -9.357342e-17

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 23

The vectors component is a matrix whose columns are the corresponding eigenvectors, sorted in the
same order as the eigenvalues. That is,

j=1; A%*%vA$vectors[,j]-vA$values[j]*vA$vectors[,j];

[,1]

[1,] 0.000000e+00

[2,] -3.552714e-15

[3,] -3.552714e-15

Exercise 3.10 Verify that the output is also (0, 0, 0), apart from numerical error, for j=2 and j=3.
Explain in words what these calculations show.

Exercise 3.11 Enter the command names(vA) and see what results. From this, infer what the names

function does. Enter the command names(A) and infer the meaning of the object NULL in R. Check your
guess by using the Help system to find out what NULL means (?NULL or help.search(’Null’).

To get the left eigenvectors of a matrix, you use eigen to compute the eigenvectors of its transpose,
t(A). So

vLA=eigen(t(A))$vectors

gets you the left eigenvectors of A.

Exercise 3.12 Compute vLA[,j]%*%A-vA$values[j]*vLA[,j] to verify the last claim about left eigen-
vectors, for j=1 to 3.

For stability analysis of differential equation models, the “dominant eigenvalue” of the Jacobian matrix
is the one with the largest real part. To find this we need to extract the real parts of each eigenvalue
and identify the largest one.

The help system (?complex) lists the R functions for working with complex numbers. The one we need
here is Re, which extracts the real parts of complex numbers.

Use data.entry(A) to create the matrix

A =

 3 0 0
2 2 −3
0 3 1

and you should find that eigen(A)$values are

[1] 1.5+2.95804i 1.5-2.95804i 3.0+0.00000i.
The first two are a complex conjugate pair with absolute value 3.316625 (abs(eigen(A)$values) gets
you the absolute values of the eigenvalues), but the third one has the largest real part.

To have R do this for you, we use the which function to find where the real part is maximized.

vA=eigen(A)$values; rmax=max(Re(vA));

j=which(Re(vA)==rmax);

lmax=Re(vA[j]); vmax=eigen(A)$vectors[,j];

The first line uses max to compute the largest real part of any eigenvalue. In the second line, which finds
the indices at which the logical condition (Re(vA)==rmax) is TRUE, in this case j=3. The third line
then extracts the relevant entries from the lists of eigenvalues and eigenvectors. The dominant real part
will then be Remax=Re(lmax).

Exercise 3.13 Try the above on A=diag(c(3,1,3)) and see what you get for vmax and Remax. Why?
[Note: the point of this exercise is that the code above for finding lmax and is sometimes not going to
work exactly as advertised. If there is a tie for the largest real part, for example if the eigenvalues are

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 24

(3,1,3), then Remax will be c(3,3), not 3. To do the next exercise, you’ll have to figure out what to do
about this.]

Exercise 3.14 In this exercise we take an eigenvalue-based look at a simple (and partially re-scaled)
predator-prey model:

dx/dt = x(1− x/K)− yxq

dy/dt = cyxq −my
(1)

with x= prey density, y=scaled predator density, and K, q, c,m positive constants. The interior equilib-
rium for this model is at

x̄ = (m/c)1/q, ȳ = (x̄1−q)(1− x̄/K)

and the Jacobian matrix at a point (x, y) is[
1− 2x/K − qyxq−1 −xq

cqyxq−1 cxq −m

]
As usual with a type-II functional response (0 < q < 1) the model exhibits a transition from stability to
cycles as K is increased (Figure 3).

(a) Write a function domreal=function(K,q,c,m) that computes and returns the largest real part of
any eigenvalue for the Jacobian of model (1) evaluated at the interior equilibrium, as a function of the
model parameters.
(b) Using your function, create a plot like that in Figure 3 panel (c), showing how the eigenvalues
change as K is gradually increased from 200 to 350 with other parameters fixed at the values q =
0.5, c = 0.1,m = 1. (“gradually” means: compute enough values that you can plot a smooth curve as a
function of K, rather than just two points connected by a line).

Figure 3: Hopf bifurcation in predator-prey model (1) with parameters q = 0.5, c = 0.1,m = 1. As K
increases, a pair of complex conjugate eigenvalues crosses the imaginary axis in the complex plane.

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 25

3.3.2 Eigenvector scalings

For a transition matrix model, the dominant right eigenvector w (i.e. the eigenvector corresponding to
the eigenvalue with largest absolute value) is the stable stage distribution, so we are most interested in
relative proportions. To get those, w=w/sum(w). The dominant left eigenvector v is the reproductive
value, and it is conventional to scale those relative to the reproductive value of a newborn. If newborns
are class 1: v=v/v[1].

Exercise 3.15 : Write a script file which applies the above to the matrices

A =

 1 −5 0
6 4 0
0 0 2

 B =

 0 1 5
0.6 0 0
0 0.4 0.9

finding all the eigenvalues and then extracting the dominant one and the corresponding left and right
eigenvectors. For B, use the scalings defined above.

3.3.3 Eigenvalue sensitivities and elasticities

For an n× n matrix A with entries aij , the sensitivities sij and elasticities eij of the dominant (largest
absolute value) eigenvector can be computed as

sij =
∂λ

∂aij
=

viwj
〈v, w〉

eij =
aij
λ
sij (2)

where λ is the dominant eigenvalue, v and w are dominant left and right eigenvalues, and 〈v, w〉 is the
inner product of v and w, computed in R as sum(v*w). So once λ, v, and w have been found and
stored as variables, it just takes some for-loops to compute the sensitivies and elasticities.

vA=eigen(A); lambda=vA$values[1];

w=vA$vectors[,1]; w=w/sum(w);

v=eigen(t(A))$vectors[,1]; v=v/v[1];

vdotw=sum(v*w);

s=A; n=dim(A)[1];

for(i in 1:n) {

for(j in 1:n) {

s[i,j]=v[i]*w[j]/vdotw;

}

}

e=(s*A)/lambda;

Note how all the elasticities are computed at once in the last line. In R that kind of “vectorized”
calculation is much quicker than computing entries one-by-one in a loop. Even better is to use a built-in
function that operates at the vector or matrix level. In this case we can use outer (see Table 6 or
?outer) to completely eliminate the nested do-loops:

vA=eigen(A); lambda=vA$values[1];

w=vA$vectors[,1]; w=w/sum(w);

v=eigen(t(A))$vectors[,1]; v=v/v[1];

s=outer(v,w)/sum(v*w);

e=(s*A)/lambda;

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 26

Vectorizing code to avoid or minimize loops is an important aspect of efficient R programming. The
functions apply or sapply are often useful in this regard and you should look into them if you have a
script that is running too slow because of loops.

Exercise 3.16 Construct the transition matrix A, and then find λ, v, w for an age-structured model
with the following survival and fecundity parameters.

Age-classes 1-6 are genuine age classes with survival probabilities (p1p2 · · · p6) = (0.3, 0.4, 0.5, 0.6, 0.6, 0.7)

Note that pj = aj+1,j , the chance of surviving from age j to age j + 1, for these ages. You can create a
vector p with the values above and then use a for-loop to put those values into the right places in A.

Age-class 7 are adults, with survival 0.9 and fecundity 12.

Results: λ = 1.0419

A =

0 0 0 0 0 0 12
.3 0 0 0 0 0 0
0 .4 0 0 0 0 0
0 0 .5 0 0 0 0
0 0 0 .6 0 0 0
0 0 0 0 .6 0 0
0 0 0 0 0 .7 .9

w = (0.6303, 0.1815, 0.0697, 0.0334, 0.0193, 0.0111)
v = (1, 3.4729, 9.0457, 18.8487, 32.7295, 56.8328, 84.5886)

3.4 matrix or Matrix? Classes in R

This section can be skipped for now. It will make sense if you have previous experience with object-
oriented languages. Othewise, come back to it after you’ve worked for a while with objects in R.

Variables and other kinds of objects in R can be assigned a class attribute which tells R what kind of
object it is. As an example:

> g=matrix(0,5,5); class(g)

NULL

shows that the object g has not been assigned a class. On the other hand,

> library(Matrix); g=Matrix(0,5,5); class(g)

[1] "Matrix"

library(Matrix) loaded the Matrix library (which has some additional and higher-accuracy routines
for matrix algebra). g=Matrix(0,5,5) created a 5-by-5 matrix of zeros, just as in the previous example,
but this time the function Matrix assigned it a class.

Class attributes allow R functions to exist in multiple versions (called “methods”), that do different
things to different classes of objects. You can list them using the methods function, for example

> methods(det);

[1] "det.default" "det.LowerTriangular"

[3] "det.Matrix" "det.UnitLowerTriangular"

[5] "det.UnitUpperTriangular" "det.UpperTriangular"

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 27

So the effect of the command det(g) depends on g’s class. If g’s class is Matrix, det(g) invokes det.Matrix
to compute the determinant. If g’s class is LowerTriangular (a kind of matrix) then deg(g) invokes
det.LowerTriangular to compute the determinant, and so on. If g doesn’t have a class for which a
specific method exists, then det(g) invokes det.default.

This explains how R can have two sets of matrix algebra routines, as we mentioned above. The methods
above for det are all part of the Matrix library (and if you try methods(det) without loading the Matrix
library, you won’t see them listed). With the Matrix library loaded, a plain old matrix will have its
determinant calculated by det.default, while a matrix of class Matrix will be handled by det.Matrix.

The convenience of classes and methods is illustrated better by methods(plot). The list that this gives
you shows that R has a series of methods that generate suitable plots for a variety of classes including
statistical models, time series, functions, etc. and the appropriate one is usually invoked “under the
hood” without the user having to specify which one you want.

The inconvenience is that some functions require arguments of a specific class. You may then have to
devote some effort to converting things from one class to another, using functions like as.matrix. If
an error message indicates that you’re in this kind of trouble, use the help system to see if a function
as.whatever exists that can convert into the necessary class. Usually there will be one, if what you’re
trying to do is legitimate.

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 28

3.5 Data Frames (and more R tricks)

A common data type in R is the data frame, which has many of the same properties as lists, vectors and
matrices. Most of what we’ll do later in the course draws from our intuition about vectors and matrices.
Still, data frames are ubiquitous and knowing how to use them will come in handy later on. Noteably,
this is the data type returned when we load data into R, so lets pull up the frog-tadpoles data.

> my.data = read.csv(file=file.choose(), header=F);

> names(my.data) = c("Frogs","Tadpoles");

We can querry what type of object my.data is using the commands mode, typeof, which tell us it’s
of the generic type list. We can get more specific using class, or any of the many is.(data type)
commands:

> class(my.data);

> is.matrix(my.data);

> is.data.frame(my.data);

To see other such function, use the autocomplete capabilities in R. Type the start of a function name
then hit tab twice to show a list of possibilities:

> is.<TAB><TAB>

is.array is.atomic is.call is.character ...

is.double is.element is.empty.model is.environment ...

...

In short, data frames are most useful because they can have columns of different data types:

> data.frame(chars=letters[1:10],ints=90:99,logicals=rep(c(TRUE,FALSE),5));

3.5.1 Data frame addressing

Data frames can be treated just like matrices, addressing by row and column:

> my.data;

> my.data[2:4,]

Frogs Tadpoles

2 1.3 2.876231

3 1.7 3.062528

4 1.8 3.707180

> my.data[2:4,2]

[1] 2.876231 3.062528 3.707180

Data frames can also have rows and columns indicated by their names, using either square brackets or
the special character $:

> names(my.data)

[1] "Frogs" "Tadpoles"

> my.data$Frogs;

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 29

data.frame(u,v,...) combines columns u, v into a data frame
names(x) access the column names in the data frame x
as.data.frame(x) convert an object of some other type to a data frame, if possible
attach(x) include columns of x in the workspace
head(x) view the first few rows of x
tail(x) view the last few rows of x

Table 7: More functions for creating and working with data frames. Also see the functions for matrices
like cbind. See the help for details.

[1] 1.1 1.3 1.7 1.8 1.9 2.1 2.3 ...

> my.data$Tadpoles;

[1] 2.036982 2.876231 3.062528 3.707180 ...

> my.data["Frogs"];

Frogs

1 1.1

2 1.3

...

> my.data[3:5,"Tadpoles"];

Exercise 3.17 Use the data.frame() and names() functions to make the following data frame

sex weight

1 M 135

2 F 106

3 M 164

4 F 127

What happens if you use as.matrix() to convert it to a different data type? What about with
as.vector()?

3.5.2 More on vector, matrix and data frame addressing

One somewhat advanced (and R specific) way of pulling out specific elements of a vector (and rows or
columns of a matrix or data frame) is using a vector of logicals (TRUE, FALSE statements). Indexing with
a vector of TRUE/FALSE values, only the elements with a TRUE are returned.

> set.seed(101)

> x=runif(9); x

[1] 0.372 0.0438 0.709 0.657 0.249 0.300 0.584 0.333 0.622

> x[rep(c(T,F,F),3)]

[1] 0.372 0.657 0.584

Thus the equivalent to returning “all x less than 0.6” is accomplished by

> x<0.6

[1] TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

> x[x<0.6]

[1] 0.37219838 0.04382482 0.24985572 0.30005483 0.58486663 0.33346714

3 COMMON R OBJECTS: VECTORS, MATRICES, AND DATA FRAMES 30

Exercise 3.18 Use the above and the frog-tadpole data to determine which in rows there are more
than twice as many tadpoles as frogs (i.e. 2*Frogs < Tadpoles). Can you create a third column (e.g.
my.data$Over) indicating this outcome for each row?

Additional Exercies: Vectors, Matrices, Data Frames

Exercise 3.19 Before typing in the commands, write down the matrices that you think will be returned
by matrix(1:4), matrix(1:4,2,2), and matrix(1:4,2,2,byrow=F). After confirming your answers
with R, see the help for matrix() to describe any discrepencies or confirm your correct reasoning.

Exercise 3.20 Use diag() and then data.entry() to create the following matrix A.

> A

var1 var2 var3 var4

[1,] 1 0 5 7

[2,] 0 2 6 8

[3,] 0 0 3 0

[4,] 0 0 0 4

Replace the four non-zero values in the upper right corner of the matrix

> A[1:2 , 3:4]

var3 var4

[1,] 5 7

[2,] 6 8

with the 2x2 matrix given by matrix(1:4,2,2,byrow=TRUE).

Exercise 3.21 Frequently, a column or two of a large data frame is used to define a new object.
Depending on the data type we want for this new object (e.g. a vector, matrix or data frame), we
can extract the columns (or rows) in different ways. Using the frog-tadpole data, and recalling that
my.data is a data frame, we can extract the first column of data using either: my.frogs = my.data[,1],
my.frogs = my.data$Frogs, my.frogs = my.data["Frogs"], or my.frogs = my.data[[1]]. Try
each, and describe how these differ (or are the same) using the functions like mode, class, is.matrix,
is.data.frame, etc.

4 ITERATION (“LOOPING”) 31

4 Iteration (“Looping”)

Loops make it easy to do the same operation over and over again, for example:

� Making population forecasts 1 year ahead, then 2 years ahead, then 3, etc.

� Simulating a model multiple times, with different values for one of the parameters.

There are two kinds of loops in R: for loops, and while loops. A for loop runs for a specified number
of steps, and a while loop runs until a certain condition is met.

4.1 For-loops

The for loops are written as

for (var in seq) {

commands

}

The dummy variable var is sequentially assigned the values in the list seq, each time executing the code
between braces { }. Here’s an example (file Loop1.R):

initial population size

initsize=4;

create vector to hold results and store initial size

popsize=rep(0,10); popsize[1]=initsize;

calculate population size at times 2 through 10, write to Command Window

for (n in 2:10) {

popsize[n]=2*popsize[n-1];

x=log(popsize[n]);

cat(n,x,"\n");

}

plot(1:10,popsize,type="l");

The first time through the loop, n=2. The second time through, n=3. When it reaches n=10, the
for-loop is finished and R starts executing any commands that occur after the end of the loop. The
result is a table of the log population size in generations 2 through 10.

Note also the cat function (short for “concatenate”) for printing results to the console window. cat

converts its arguments to character strings, concatenates them, and then prints them. The "\n" ar-
gument is a line-feed character (as in the C language) so that each (n,x) pair is put on a separate
line.

Several for loops can be nested within each other, which is needed for working with matrices as in the
example below. It is important to notice that the second loop is completely within the first. Loops
must be either nested (one completely inside the other) or sequential (one starts after the previous
one ends).

A=matrix(0,3,3); (1)

4 ITERATION (“LOOPING”) 32

for (row in 1:3) { (2)

for (col in 1:3) { (3)

A[row,col]=row*col (4)

} (5)

} (6)

A; (7)

Type or copy this into a script file and run it; the result should be

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

[3,] 3 6 9

Line 1 creates A as a matrix of all zeros - this is an easy way to create a matrix of whatever size you
need, which can then be filled in with meaningful values as your program runs. Then two nested loops
are used to fill in the entries. Line 2 starts a loop over the rows of A, and immediately in line 3 a loop
over the columns is started. To fill in the matrix we need to consider all possible values for the pair (row,
col). So for row=1, we need to consider col=1,2,3. Then for row=2 we also need to consider col=1,2,3,
and the same for row=3. That’s what the nested for-loops accomplish. For row=1 (as requested in line
2), the loop in lines 3-5 is executed until it ends. Then we get to the end in line 6, at which point the
loop in line 2 moves on to row=2, and so on.

Nested loops also let us automate the process of running a simulation many times, for example with
different parameters or to look at the average over many runs of a stochastic model. For example
(Loop2.R),

p=rep(0,5); (1)

for (init in c(1,5,9)){ (2)

p[1]=init; (3)

for (n in 2:5) { (4)

p[n]=2*p[n-1] (5)

cat(init,n,p[n],"\n"); (6)

} (7)

} (8)

Line 1 creates the vector p. Line 2 starts a loop over initial population sizes Lines 4-7 does a ”population
growth” simulation Line 8 then closes the loop over initial sizes

The result when you run Loop2.R is that the “population growth” calculation is done repeatedly, for a
series of values of the initial population size. To make the output a bit nicer we can add some headings
as the program runs - source Loop3.R and then look at the file to see how the formatting was done.

If this discussion of looping doesn’t make sense to you, stop now and ask for some help! Loops are
essential from here on out.

Exercise 4.1 : Imagine that while doing fieldwork in some distant land you and your assistant have
picked up a parasite that grows exponentially until treated. Your case is more severe than your assistant’s:
on return to Ithaca there are 400 of them in you, and only 120 in your assistant. However, your field-
hardened immune system is more effective. In your body the number of parasites grows by 10 percent
each day, while in your assistant’s it increases by 20 percent each day. That is, after your return to
Ithaca your parasite load n(j) grows according to the rule n[j+1]=1.1*n[j] where j is time in days,
and your assistant’s parasite load grows according to the rule m[j+1]=1.2*m[j].

4 ITERATION (“LOOPING”) 33

Write a script file Parasite1.R that uses a for-loop to compute the number of parasites in your body
and your assistant’s over the next 30 days, and draws a single plot of both on log-scale (i.e. log(n(j))
and log(m(j)) versus time for j=1 to 30 days). Save the script! You’ll be using it later, as the starting
point for some other exercises.

Exercise 4.2 : Write a script file that uses for-loops to create the following 5×5 matrix A. Think first:
do you want to use nested loops, or sequential?

0 1 2 3 4
0.1 0 0 0 0
0 0.2 0 0 0
0 0 0.3 0 0
0 0 0 0.4 0

Exercise 4.3 Write a for loop that fills vector X with the first 100 Fibonacci numbers starting at 0.

Exercise 4.4 Write a script file that uses a for-loop to calculate solutions of the difference equation
model

N(j + 1) = r(j)N(j)/(1 +N(j)), N(1) = 1

up to j = 13, where r(j) = 2e−0.2j . Remember that in R, ex is computed using the exp function. Write
your script so that all values of r(j) are computed and stored in a vector before the start of the for-loop,
and have your script plot the solution as a graph of N(j) versus j with the values plotted as points and
connected by lines.

Exercise 4.5 Modify your script file from the previous exercise so that it reads a list of 12 positive
numbers from a text file named r.txt into an vector named r, and then uses a for-loop to calculate the
values of N(j). You can use the R script editor or any other text editor to create r.txt and put into it
any positive numbers that you like. This would be a good occasion to use ?scan and ?read.table to
remind yourself about these functions for reading data into R.

Exercise 4.6 Use a for loop and the Sys.sleep() function to make an animated particle diffusion
cartoon described by the pseudocode below:

N=500 particles

x,y = coordinate vectors

initialize from normal distribution, mean 0.5, variance (ahem) 0.0025

for 100 time steps {

update the coordinates by adding Normal(0,0.01) noise to x,y

plot the points using pch=19, xlim=c(0,1), and ylim=c(0,1)

pause for 0.05sec

}

4 ITERATION (“LOOPING”) 34

x < y less than
x > y greater than
x <= y less than or equal to
x >= y greater than or equal to
x == y equal to
x ! = y not equal to

Table 8: Some comparison operators in R. Use ?Comparison to learn more.

4.2 While-loops

A while loop lets an iteration continue until some condition is satisfied. For example, we can solve a
model until some variable reaches a threshold. The format is

while(condition){

commands

}

The loop repeats as long as the condition remains true. Loop4.R contains an example similar to the
for-loop example; source it to get a graph of population sizes over time. A few things to notice about
the program:

1. Although the condition in the while loop said while(popsize<1000) the last population value
was > 1000. That’s because the loop condition is checked before the commands in the loop are
executed. When the population size was 640 in generation 6, the condition was satisfied so the
commands were executed again. After that the population size is 1280, so the loop is finished and
the program moves on to statements following the loop.

2. Since we don’t know in advance how many iterations are needed, we couldn’t create in advance
a vector to hold all the results. Instead, a vector of results was constructed by starting with the
initial population size and appending each new value as it is calculated. .

3. When the loop ends and we want to plot the results, the “y-values” are popsize, and the x values
need to be 0:something. To find “something”, the length function is used to find the length of
popsize.

Within a while-loop it is often helpful to have a counter variable that keeps track of how many times
the loop has been executed. In the following code, the counter variable is n:

n=1;

while(condition) {

commands

n=n+1;

}

The result is that n=1 is true while the commands (whatever they are) are being executed for the first
time. Afterward n is set to 2, and this remains true during the second time that the commands are
executed, and so on. One use of counters is to store a series of results in a vector or matrix: on the nth

time through the commands, put the results in the nth entry of the vector, nth row of the matrix, etc.

The conditions controlling a while loop are built up from operators that compare two variables (Table
8). These operators return a logical value of TRUE or FALSE. For example, try:

4 ITERATION (“LOOPING”) 35

> a=1; b=3; c=a<b; d=(a>b); c; d;

The parentheses around (a>b) are optional but can be used to improve readability in script files.

Warning! x=y and x==y are two completely different things. The first is an assignment, in which x is
assigned a new value. The second is a comparison.

When we compare two vectors or matrices of the same size, or compare a number with a vector or
matrix, comparisons are done element-by-element. For example,

> x=1:5; b=(x<=3); b

[1] TRUE TRUE TRUE FALSE FALSE

R also does arithmetic on logical values, treating TRUE as 1 and FALSE as 0. So sum(b) returns the
value 3, telling us that 3 entries of x satisfied the condition (x<=3). This is useful for running multiple
simulations and seeing how often one outcome occurred rather than another.

Exercise 4.7 Write a script file Parasite2.R that uses a while-loop to compute the number of parasites
in your body and your assistant’s so long as you are sicker than your assistant (i.e. so long as n > m)
and stops when your assistant is sicker than you. Use a copy of Parasite1.R as your starting point.

Exercise 4.8 Rewrite the for loop in the following code using a while loop and a counter variable j:

Simulate something close to Brownian Motion

set.seed(3);

Year = seq(1980,2009,by=0.01);

Value = cumsum(rnorm(length(Year)));

Value = Value - min(0,min(Value))+1;

Plot all the data

par(ask = TRUE);

plot(Year, Value, type="l", main=paste("Years",1980,"to",2008));

Plot each half-decade

for(j in seq(1980,2000,by=5)) {

plot(Year, Value, type="l", lwd=3, xlim=c(j,j+5), main=paste("Years",j,"to",j+5));

}

4.2.1 Logical operators

Sometimes we need to make decisions based on several different criteria: is x > 3 and also y > 5?. For
these, logical operators are used to make and combine multiple comparisons:

! Negation

& && AND

| || OR

OR is non-exclusive, meaning that x|y is true if x is true, if y is true, or if both x and y are true. For
example:
>> a=c(1,2,3,4); b=c(1,1,5,5); (a<b)&(a>3); (a<b)|(a>3);
The two forms of AND and OR differ in how they handle vectors. The shorter one does element-by-element
comparisons; the longer one only looks at the first element in each vector.

An alternative to (x==y) is the identical function. identical(x,y) returns TRUE if x and y are
exactly the same, else FALSE. For example, if x and y are vectors, then x==y will return a vector of

4 ITERATION (“LOOPING”) 36

values for element-by-element comparisons, while identical(x,y) returns a single value: TRUE if each
entry in x equals the corresponding entry in y, otherwise FALSE. You can alsu use all(x==y), which
takes the element-by-element vector returned by x==y and returns TRUE if all are TRUE, FALSE otherwise.
You can use ?Logical to read more about logical operators.

Exercise 4.9 Use the identical function to construct a one-line command that returns TRUE if each
entry in a vector rnorm(5) is positive, and otherwise returns FALSE. Hint: rep also works on logical
variables, so rep(TRUE,5) returns the vector (TRUE,TRUE,TRUE,TRUE,TRUE).

Exercise 4.10 Construct a different one-line command that returns TRUE if each entry in a vector
rnorm(5) is positive, and otherwise returns FALSE. This time use the fact that R does arithmetic on
logical values. (Note: the point of this and the previous exercise is to emphasize ways of vectorizing
operations – avoiding the use of loops, which are slow, when you could express the same computation
as a single operation on a vector or matrix.)

Exercise 4.11 R has two lists letters and LETTERS that contain lower case and upper case letters,
respectively. The function sample(x,n) takes a list x and return n elements chosen randomly from that
list (with or without replacement). Write a while loop that samples 3 LETTERS with replacement, and
does so until this random word equals c(”E”, ”E”, ”B”). Use a counter variable to track the number of
loops, and don’t forget to initialize the word. Warning! This should only take a few seconds to run! If
the while loop doesn’t want to stop, the ESC key will stop the current calculation.

Exercise 4.12 Write a for loop that repeates the previous while loop 100 times and stores the number
of guesses needed to match the word. Plot a histogram of the number of guesses, and discuss what
distribution these numbers should follow.

4 ITERATION (“LOOPING”) 37

4.3 Iteration alternatives in R: flavors of apply()

Our goal as programmers in R is to try write code that takes advantage of what R has under the hood.
It’s faster, takes less code (less room for error!) and makes your code easy for others to read and
understand. One way we do this is to use vectors and matrices instead of an excess of for and while

loops. An additional set of R specific tools to avoid unnecessary element-by-element code, are the set
of functions which include apply(), lapply(), sapply(), and tapply(). They each take at least two
arguments: an object (usually a matrix or data frame) X, and a function which is then applied to the
rows, colums or individual elements of X. The result is then returned as a list, matrix or data frame.
See the help for these functions for details.

To illustrate their use, here are a couple of examples.

Example 1: sapply() vs. for()

squareplusone = function(x) { return(1 + x^2); }

X = seq(0,10,by=2);

Y = rep(NA,length(X));

This for loop...

for (j in 1:length(X)) {

Y[j] = squareplusone(X[j]);

};

Y

... does the same thing as this sapply() command.

Y = sapply(X,squareplusone);

Y

Example 2: Computing column means for a matrix

X = matrix(rnorm(60,c(10,20,30)),20,3,byrow=T); X

Y = apply(X,2,mean); # 2nd argument: take the mean of each 1=row, 2=column.

Y

Exercise 4.13 Modify the apply() command in the Example 2 above so that it returns the row sums
in a vector.

Exercise 4.14 Write a for loop that yields the same result as Y = apply(X,1,sd);

Exercise 4.15 Define a function lessmean() that takes an vector z and returns the mean of z after
chopping off the decimal part of each number in z (hint: floor()). Modify the apply() command in
Example 2 above so that it computes the lessmean() values of each column of X.

5 BRANCHING: USING IF AND ELSE 38

5 Branching: using if and else

Returning now to the comparison operators, we often use “rules” for model simulation or data processing
that depend on the values of certain R objects. The if/else statements lets us do this; the basic format
is

if(condition) {

do some commands

}else{

do some other commands

}

If condition is TRUE the first block of code is run, otherwise the second block of code gets called.

An if block can be set up in other ways, but the layout above, with the }else{ line to separate the two
sets of commands, can always be used. If the “else” is to do nothing, you can always just leave it out.

Exercise 5.1 Look at and source Branch1.R to see an if statement which makes the population
growth rate depend on the current population size.

Exercise 5.2 Modify a copy of the Parasite1.R script so that there is random variation in parasite
success. Specifically, on “bad days” the parasites increase by 10%, while on “good days” they are beaten
down by your immune system and they go down by 10%; for your assistant the variation is ±20%. That
is,

Bad days: n(j + 1) = 1.1n(j), m(j + 1) = 1.2m(j)

Good days: n(j + 1) = 0.9n(j), m(j + 1) = 0.8m(j)

Do this by using runif(1) and an if statement to “toss a coin” each day: if the random value produced
by runif for that day is < 0.25 it’s a good day, and otherwise it’s bad. Be sure that your script does
one new coin toss for each new day.

5.1 Nested if statements

More complicated decisions can be built up by nesting one if block within another. Branch1.R can
be modified to use nested if and else statements to have population growth tail off in several steps as
the population size increases:

for (i in 1:50) { (1)

if(popnow<250){ (2)

popnow=popnow*2; (3)

}else{ (4)

if(popnow<500){ (5)

popnow=popnow*1.5 (6)

}else{ (7)

popnow=popnow*0.95 (8)

} (9)

} (10)

popsize=c(popsize,popnow); (11)

} (12)

What does this accomplish?

5 BRANCHING: USING IF AND ELSE 39

� If popnow is still < 250, then line 3 is executed growth by a factor of 2 occurs. Since the if

condition was satisfied, the entire else block (line numbers 5-10 above) isn’t looked at; R jumps
line to line (11) and continues from there.

� If popnow is not < 250, R moves on to the else on line 4, and immediately encounters the if on
line 5.

� If popnow is < 500 the growth factor of 1.5 applies. Then R jumps to line (11) and continues from
there.

� If neither of the two if conditions is satisfied, the final else block is executed and population
declines by 5% instead of growing.

Alternatively, nested else-if statements can also be written as

if(condition1) {

do something

} else if(condition2) {

do something different

} else if(condition3) {

do something completely different

} else {

do something else

}

Exercise 5.3 Modify Branch1.R to include the nested if statements (1)-(10) above. Once that works,
then rewrite it using the alternative format using ... } else if() {... described above.

Exercise 5.4 Use nested if’s to write a script that draws one random number U between 0 and 1 using
runif(1) and then writes to the console window “Small”, “Medium”, or “Large” depending on whether
U is ≤ 1/3, between 1/3 and 2/3, or ≥ 2/3.

Exercise 5.5 Modify the script from the previous exercise and define a function Magic8() that takes
a question (a string) as an argument and returns a random answer of “yes”, “no” or “maybe.”

5.2 Functions ifelse() and switch()

Sometimes you may wish to do something as simple as define one variable in a way that depends on the
value of another variable. For example,

if(x==1) {

y="a";

} else {

y="b";

}

This can often be done using either ifelse() or switch(). The first of these two functions evalues
an expression (it’s first argument) and returns one of two values depending on whether or not that
expression is true or false.

x = round(runif(1)); # x = a 0,1 coin toss

y = ifelse(x==1, "x is 1", "sorry, x wasn’t 1"); y;

5 BRANCHING: USING IF AND ELSE 40

When more than a simple TRUE/FALSE decision determines the value to return, the switch() function
works in a similar way (see the help for important details).

x = sample(c("a","b","c","d"),1); # pick a random letter

y = ifelse(x==1, "x is 1", "sorry, x wasn’t 1"); y;

The switch() function will evaluate an expression followed by n arguments. It returns the argument
corresponding to the number returned by the expression:

x = sample(1:5,1);

y = switch(x, "first","second","third","fourth","fifth"); x; y;

The switch() function also can take character values and return a corresponding value specified in the
other arguments

x = sample(c("a","b","c","d"),1); # pick a random letter

y = switch(x, a="A", b="B", c="C", d="D"); x; y;

Exercise 5.6 Using a random row of the data in FakeDiseaseData.csv (see ?sample) use the switch()
function to return ”Male”, ”Female” or ”Unknown” based on the value of Name in that row.

Exercise 5.7 Using the data from the previous exercise, write a for loop that adds a third colum Sex

to the data frame. Do this first using nested if-else statements, then create a second script that uses
the switch() function.

6 WRITING YOUR OWN FUNCTIONS 41

6 Writing your own functions

Functions (often called subroutines in other programming languages) allow you to break a program into
subunits. Each function is an independent little program, performing a few related tasks and returning
the results. This makes complex problems easier to program, and makes it easier to see the logical flow
of a large program. Each function can be written and tested independently, before you try to put all
the pieces together.

Also, many R functions for simulation and data analysis require that you specify your model in the form
of a function – for example, a system of differential equations that you want to solve numerically, or
a nonlinear model that you want to fit to experimental data. The R function (for solving differential
equations, doing nonlinear least squares, etc.) is then “told” the name of your function, and does its job
on your particular model.

The basic syntax for creating a function is as follows. Suppose [for the sake of an example] you want a
function mysquare that produces sums of squares: given vectors v and w, it returns a vector consisting
of the element-by-element sums of the squares of the elements in the two vectors. The syntax is then:

mysquare=function(v,w) {

u=v^2+w^2;

return(u)

}

This code adds mysquare as an R command, just like sin or log. The variable u is internal to the
function; if you use mysquare in a program, the program won’t “know” the value of u. You can save
some typing by computing the final value within the return statement:

mysquare=function(v,w) {return(v^2+w^2)}

Exercise 6.1 Type the above into a script file and run it, and then do q=mysquare(1:4,1:4); q in
the console window.

Schematically, a function is defined by a code block like this:

function.name=function(argument1,argument2,...) {

command;

command;

...

command;

return(value)

}

Functions can return several different values, by combining them into a list with named parts.

mysquare2=function(v,w) {

q=v^2; r=w^2

return(list(v.squared=q,w.squared=r))

}

You can then extract the components in the usual way.

> x=mysquare2(1:4,2:5); names(x);

6 WRITING YOUR OWN FUNCTIONS 42

[1] "v.squared" "w.squared"

> x$v.squared

[1] 1 4 9 16

Functions can be placed anywhere in a script file. Once the code defining the function has been executed
within a session, the new function can be treated like any other R command. However, user-defined
functions “vanish” when you end a session. To use them again in another session, the function
code needs to be run again. Alternatively, you can set things up (on your R at home) so that functions
you use consistently are automatically loaded whenever R starts; the next subsection describes how.

Exercise 6.2 Write a function stats(v) that takes as input a single vector, and returns a list with
named components average (mean of the values in the vector), and variance (population variance
estimated from the values in the vector, using var). Verify that once you’ve sourced the function
definition, you get

> stats(1:21);

$average

[1] 11

$variance

[1] 38.5

Exercise 6.3 Write a function to compute a forager’s expected rate of energy gain R(t1, t2) in a Patch
Model with two patch types, travel time T = 3, 70% patches of type 1 with gain function g1(t) = 2t0.5,
and 30% of type 2 with g2(t) = t0.7. Recall that the gain rate as a function of the GUTs ti in a Patch
Model with multiple patch types is

R =

∑
i

Pigi(ti)

T +
∑
i

Piti

where Pi is the fraction of type-i patches. Save this script as TwoPatchRate.R, we’ll be using it later.

Exercise 6.4 This exercise is about using a function in a script to simulate the random population
growth model

n(t+ 1) = λ(t)n(t), n(0) = 1. (3)

(a) Write a function new.pop(nt) whose input argument nt is a number representing population size
n in year t, and which returns the number λ×nt where λ = eZ and Z is a random number having a
normal distribution with mean=0.05, sd=0.5. Z should be generated by rnorm within the function, so
that a new value of Z is generated each time the function is called.
(b) Write a script that uses the new.pop function to simulate the model (3) from time t = 0 to t = 50,
and then plots n(t) over time.

Exercise 6.5 (a) Modify your script from the last exercise so that the input to new.pop can be a vector
rather than a single number, say nt = (n1, n2, n3, · · · , nd), and the returned value is the vector with
components niλi(t) with each λi having the distribution for λ specified in the last exercise. Do this in
such a way that the function does not use any loops (hint: remember what u*v is when u and v are
equal-size vectors), and that new.pop can use the length function to find out how long nt is).
(b) Having done this, you can now modify your script so that it simulates many populations that each
follow the random growth model (3), i.e.

ni(t+ 1) = λi(t)ni(t), ni(0) = 1, i = 1, 2, · · · , d

using a single loop on time t – which is much faster than a nested loop over time and over populations.
Use matplot to display the results for t = 0, 1, · · · 50 and d = 20 replicate populations. [Hint: set up nt

as a matrix with d columns, and 1’s in the first row. One call to new.pop with the first row as input,
returns values for the second row: nt[2,]=new.pop(nt[1,]). And so on, as often as needed).

7 SOLVING DIFFERENTIAL EQUATIONS 43

7 Solving differential equations

In addition to basic programming, R includes many functions that make it relatively simple to do some
complicated things, relative to the effort required in a compiled language such C or fortran. A prime
example is finding numerical solutions for a system of differential equations

dx/dt = f(t, x) (4)

Here t is time, and x is the state vector of the system, i.e.

x(t) = (x1(t), x2(t), · · · , xn(t))

where the xi(t) are the state variables of the model.

The scripts mentioned below use function for computing numerical solutions to ODEs found in the R
package odesolve. However, this package has been replaced by the improved version, deSolve. This
updated package (i.e., the one you should use!) includes an ode() function, which is a wrapper around the
lsoda function mentioned below, and others like it. I encourage you to go through the examples below,
and as an exercise replace the use of odesolve with deSolve and ode() instead. For more information,
see ?ode and “Solving Differential Equations in R” by Soetaert, Petzoldt and Setzer. Discussion of which
solvers to use instead of lsoda, and when, is beyond the scope of this document.

When using odesolve or deSolve packages, the first step is to write an R function to evaluate the right
hand side of your ODE, i.e., f , in eqn. (4). For example, here is an example of the Lotka-Volterra
competition equations (see the example file SolveLotka.R):

dx1/dt = x1(2− x1 − ax2)

dx2/dt = x2(3− x2 − bx1)
(5)

and here is the function that you would write for it:

lotka=function(t,x,parms) {

a=parms[1]; b=parms[2];

xdot=rep(0,2);

xdot[1]=x[1]*(2-x[1]-a*x[2]);

xdot[2]=x[2]*(3-x[2]-b*x[1]);

return(list(xdot));

}

There’s a lot to digest in this function, so here are a few things to note:

1. The function must have input arguments (t,x,parms), even if only x is used to compute the
derivative. These are a time value t, a state variable vector x, and a parameter value list parms,
but these can be named whatever you’d like (e.g., (ts,yvals,params) would also work).

2. parms is a vector of parameter values for function. This allows you to write a function with “free”
parameters, so that you can see how solutions change as parameters are varied, without having to
re-write the function for each new parameter set. It also simplifies the process of fitting differential
equations to data (we’ll be doing this soon).

3. The derivative has to be returned as a list. There’s a good reason for this; if you’re curious and
have way too much free time on your hands (you’ve been warned!), ?odesolve::lsoda gives the
explanation.

The second step is to use an R function that implements an algorithm for numerical solution of differential
equations. These are in the odesolve package, which has to be loaded (at the command line or at the
top of a script file) by

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Soetaert~et~al.pdf

7 SOLVING DIFFERENTIAL EQUATIONS 44

library(odesolve).

Note: Replace odesolve with deSolve in the scripts, if needed, as odesolve may some day be removed
from the package repository.

One “basic” solver is rk4 which implements the 4th-order Runge Kutta method with a fixed time step.
The format is

out=rk4(x0,times,func,parms)

• x0 is the initial value of the state variable vector x at time times[1]

• times is a vector of the time values for which you want x(t) values
• func is the function specifying the model (such as the lotka function above)
• parms is the vector of parameter values passed to func

So here is an example using our lotka function:

x0=c(2,1);

times=(0:200)/10;

parms=c(0.5,0.5);

out=rk4(x0,times,lotka,parms)

matplot(out[,1],out[,2:3],type="l",ylim=c(0,3));

As the last line indicates, rk4 returns a matrix in which the first column gives the times at which solution
values were obtained, and the remaining columns give the (approximate) state vector values.

You can do the same more compactly once you get the hang of it:

out=rk4(c(2,1),(0:200)/10,lotka,c(0.5,0.5))

In the line above, the values of the input arguments are specified within the call to rk4. When doing a
function call this way, the arguments have to occur in the order that the function expects. For example,
try switching the order of the 2nd and 3rd arguments:

out=rk4(c(2,1),lotka,(0:200)/10,c(0.5,0.5))

The result is an error message, because rk4 is expecting a numeric vector as its second argument, and
it gets a function name instead. If you supply the names of arguments, then they can go in any order,
for example:

out=rk4(y=c(2,1),func=lotka,times=(0:200)/10,parms=c(0.5,0.5))

7.1 Always use lsoda! Except when you shouldn’t...

The RK4 method has limitations, so a more reliable method to use is lsoda (although, see ?ode after
loading the deSolve package for alternatives). This general-purpose differential equation solver was
developed at Lawrence Livermore National Laboratory and automatically switches between stiff and
non-stiff methods (if that terminology means anything to you) to improve numerical accuracy. The full
range of possible arguments to lsoda are

7 SOLVING DIFFERENTIAL EQUATIONS 45

lsoda(y, times, func, parms, rtol=1e-06, atol=1e-06, tcrit=NULL,

jacfunc=NULL, verbose=FALSE, dllname=NULL, hmin=0, hmax=Inf)

Don’t panic! Defaults are provided for everythying except for the case-specific arguments required by
rk4, so lsoda can be called just like rk4:

out=lsoda(x0,times,lotka,parms)

matplot(out[,1],out[,2:3],type="l",ylim=c(0,3));

For the most part you can get away with this, so for now we will.

One key reason for using lsoda rather than rk4 is stiffness. Differential equations are called stiff if they
have some variables or combinations of variables changing much faster than others. Stiff systems require
special techniques and are harder to solve than non-stiff systems. The lsoda solver monitors the system
that it is solving for signs of stiffness, and automatically switches to a stiff-system solver when necessary.
Many biological models are at least mildly stiff, so for real work you should always use lsoda rather
than rk4. The only time to try rk4 is that if lsoda fails on your problem (returning an error message
rather than a solution matrix), you may get a clue as to the reason by trying rk4 with a very small time
step and seeing how the solutions behave (e.g., does a state variable blow up to infinity in finite time?).

Exercise 7.1 Write a script file that uses lsoda to replicate the results in Figure 3.7 of Bulmer chapter
3, for the classical Rosenzweig-MacArthur predator-prey model (n1 is the prey, n2 the predator, and we
write the model in the usual form)

dn1/dt = r1n1(1− n1/K1)− n2
a1n1
B + n1

dn2/dt = n2
a2n1
B + n1

− r2n2
(6)

and parameter values r1 = r2 = 1, a1 = a2 = 2, B = 200 with initial values n1(0) = 300, n2(0) = 50.
The result to be replicated is that for K1 = 500 predator and prey converge to an equilibrium, while for
K1 = 650 they settle into a steady pattern of cyclic oscillations. To graphically show what happens in
each case, have your script file solve the model from t = 0 to 100, and plot the densities of predator and
prey populations as a function of time.

Exercise 7.2 Modify your script file from the previous exercise to incorporate predator switching in
the form of a type-III functional response. Specifically,
(a) add a parameter q > 1 affecting how the predator responds to changes in prey density:

dn1/dt = r1n1(1− n1/K1)− n2
a1n

q
1

Bq + nq1

dn2/dt = n2
a2n

q
1

Bq + nq1
− r2n2

(7)

(b) Use numerical solutions of the model (at judiciously chosen sets of parameter values) to explore how
the stability of the interaction is affected as the value of q increases from 1. At parameters giving a stable
equilibrium for q = 1, can increasing q destabilize the equilibrium and give rise to cycles? Conversely,
at parameters giving rise to cycles when q = 1, can increasing q stabilize the equilibrium and eliminate
the cycling?

7.2 The logs trick

In many biological models the state variables always must be non-negative, but a numerical ODE solver
doesn’t know this. If a variable decreases rapidly to near-zero values in the exact solution, a numerical

7 SOLVING DIFFERENTIAL EQUATIONS 46

approximate solution might overshoot to a negative value, leading to nonsense. For example, if the
number of infectives becomes negative in an SIR-type infectious disease model, the transmission rate
βSI becomes negative (here β is a positive constant, S is the number of individuals susceptible to
catching the disease, and I is the number of infective individuals). Disease transmission then goes in the
wrong direction: contact between susceptibles and infectives makes infected individuals become healthy,
pushing I even further negative. Once a model goes down the rabbit hole, it might never come back.

This problem can often be fixed by a simple trick that is often used but rarely written down. The trick
is to transform the model onto natural log scale, solve the transformed model, and back-transform the
output. This is easier than it sounds, because of the fact that for any state variable x(t),

d(log x(t))

dt
=

1

x(t)

dx

dt
. (8)

This means that you can compute the untransformed vector field dx/dt, and then get the tranformed
vector field with a single element-by-element division. For example, here is the function that you would
use to solve the Lotka-Volterra model on log scale:

Loglotka=function(t,logx,parms) {

x=exp(logx);

a=parms[1]; b=parms[2];

xdot=rep(0,2);

xdot[1]=x[1]*(2-x[1]-a*x[2]);

xdot[2]=x[2]*(3-x[2]-b*x[1]);

return(list(xdot/x));

}

There are only two differences from the original lotka: the first line that back-transforms from logx

to x, and the last line that uses equation (8) to compute the vector field of the log-transformed state
vector.

Or, with a bit more thinking, you can work out what 1
x
dx
dt is, and write that as your function, as in:

Loglotka2=function(t,logx,parms) {

a=parms[1]; b=parms[2]; x=exp(logx);

xdot=rep(0,2);

xdot[1]=(2-x[1]-a*x[2]);

xdot[2]=(3-x[2]-b*x[1]);

return(list(xdot));

}

The logs trick is not a panacea. It can even create problems that weren’t there originally. If a positive
state variable converges to 0 in non-transformed numerical solutions, then on log scale it is diverging to
−∞, potentially leading to numerical overflow errors. For more, see Hurtado (2020).

Exercise 7.3 Write a script file that solves the Rosenzweig-MacArthur model (6) using the logs trick
with lsoda, and use it to replicate your results from that exercise.

7.3 Additional arguments in lsoda

Sometimes, we need to fine-tune ODE solvers like lsoda. Some of the more common additional arguments
to change are rtol, atol, hmin, and hmax.

8 OPTIMIZATION AND FITTING MODELS TO DATA 47

rtol, atol control the accuracy that the solver tries to achieve (they stand for relative and absolute error
tolerances). lsoda gets from one time-value to another by taking small steps, and adaptively adjusting
their size (and number) to achieve the necessary accuracy, in particular so that the error in computing
each new value of state variable xi is less than rtol |xi| + atol. Small values of rtol and atol give more
accurate solutions, but it takes longer to get them.

hmin, hmax control the range of possible time-step sizes that can be used. Setting a value for hmax is
just a bit of added security, to avoid lsoda becoming over-confident about how large a step it can take.
This is most important when the model is explicitly time-dependent, and you want to make sure that
lsoda doesn’t jump over brief “shocks” to the system. Setting hmin is a way to ensure that lsoda doesn’t
grind down to taking infinitely many, infinitely short time steps.

8 Optimization and fitting models to data

Optimization is extremely important and extremely difficult. A typical problem for modelers is
the following: given a set of data and a model, we want to choose model parameters to fit the data as
well as possible. Here is an example: a data set (x(t), t = 1, 2, · · · , 14) is stored in vectors tvals,xvals
and we want to fit those data with a differential equation, the so-called θ-logistic model

dx/dt = rx(1− (x/K)θ).

tvals=1:14;

xvals=c(15.58,30.04,66.05,141.6,274.6,410.0,468.8,526.4,472.5,

496.6,489.5,492.0,496.8,473.0);

ThetaLogist=function(t,x,parms) {

r=parms[1]; K=100*parms[2]; theta=parms[3]

xdot=r*x*(1-(x/K)^theta);

return(list(xdot));

}

The first step is to choose an objective function F (p) - a measure of how close the model is to the
data, as a function of the parameter vector p. The objective function must be set up so that small
is beautiful – a small value of F means a good fit to the data. One commonly used measure is the
least squares criterion: choose parameters to minimize the sum of squared deviations between data and
model output

TLfit=function(p) {

parms=p[1:3]; x0=p[4]; times=1:14;

out=lsoda(x0,times,ThetaLogist,parms,hmin=0.001);

mse=mean((out[,2]-xvals)^2);

return(mse);

}

Note that the model has 3 parameters, but the objective function TLFit has 4 arguments (i.e. p is
a vector of length 4). The additional argument is the initial value x0. Were we to use xvals[1] as x0
we would be giving that value special treatment, insisting that the model solution pass exactly through
that value. To put all data points on an equal footing, we have to treat x0 as another unknown value
to estimate.

Now we want to minimize TLFit as a function of p. Calculus is no help: we can compute values of TLfit
but there is no formula, so we can’t use a “set derivatives to 0” approach. Instead we hand the problem

8 OPTIMIZATION AND FITTING MODELS TO DATA 48

over to an optimizer, a routine that searches for the minimum of a function. Because optimization
is important for lots of things – not just theoretical ecology, but really important things like devising
delivery routes to provision each McDonalds “restaurant” at minimal expense – considerable effort has
gone into developing software that can hunt efficiently for minima of functions. In R these are accessed
through the functions optim and nlm. The former has the advantage of providing a common interface
to several methods, so we will discuss optim here, but use of nlm is very similar. For the example
above,

p0=c(1,5,1,15);

fit=optim(p0,TLfit);

fit2=optim(fit$par,TLfit);

fit$par; fit2$par;

p0 is our initial guess, based on eyeballing the data for r,K, x0 and starting with a standard logistic
(θ = 1). The next line does a minimal call to optim, providing the objective function name and the
initial guess, and accepting default values for everything else.

The default optimization method is the Nelder-Mead Simplex Algorithm, discussed below. This is a
robust method intended for functions where it is costly to compute derivatives of the objective function,
so it is best to search using only values of the objective function. As a safeguard, we re-optimize starting
from the supposed minimum identified on the first call to optim, and check to see that we converge back
to the same parameter estimates. In this case the re-optimization makes no significant adjustments to
parameters, so we’re done and can plot the results (Figure 4) – see FitThetaLogist.R for the complete
code.

2 4 6 8 10 12 14

0
10

0
30

0
50

0

time(d)

P
op

ul
at

io
n

co
un

t

● ●
●

●

●

●

●

●

●
● ● ● ●

●

Figure 4: Results from least-squares fitting of the θ-logistic model. Points are the data (from Veilleux
1976,1979), curve is the model solution with best-fitting parameters

If simple optimization doesn’t seem to be working – as evidenced by the finding that repeated calls to
optim keep on giving different results – it may help to vary some of the default parameters in optim.

Exercise 8.1 Type names(fit) at the console, and then use ?optim to find out what all the parts are
of the object returned by optim.

Exercise 8.2 If we reduce the number of parameters by assuming that θ = 1 (a standard logistic model)
can you fit the data as well? Modify the script file for the example so that θ = 1, i.e. dx/dt = rx(1−x/K),

8 OPTIMIZATION AND FITTING MODELS TO DATA 49

and see if the model can fit the data as well as when we also allow θ to be fitted.

Exercise 8.3 Write a script file that uses optim to fit the same data as in the example above, by the
difference equation model

xt+1 =
λxt

1 + bxt

[in plant ecology this is known as the Reciprocal Yield Law model]. Have your script produce a plot of
data and fitted model like Figure (4). Note that instead of calling lsoda to solve the model, you will
have to write a for-loop (inside the objective function) to compute solutions of the model. You’ll also
need an initial guess for the parameter values. The initial growth when x is small gives you an idea of
what λ ought to be, and then you can estimate b so that the model’s equilibrium corresponds to what
you see in the data.

Note: The package optimx offers some improvements over the optim package, and additional optimiza-
tion methods in R can be found in the CRAN Task View on Optimization at https://cran.r-project.
org/web/views/Optimization.html.

8.1 What to optimize?

This is not an easy question, because it depends on what you believe about the real system. In the
θ-logistic example above we asked for a single deterministic solution of the model to pass close to all
the data points. This is called calibration or trajectory matching. It assumes that the real system is
deterministic and that all differences between model output and the data are due to measurement errors.
That is, we assume that the model is perfect but the data are not. In that case the objective function can
be chosen to correspond to the statistical principle of maximum likelihood: parameters are chosen to
maximize the likelihood of the observed data, based on the statistical distribution of the measurement
errors.

The R function mle, in the stats4 package, can be used to fit models by maximum likelihood. The
script FitThetaLogist.R includes an example. The objective function for mle must be the negative
log likelihood of the data under the assumed model. The fitted model then includes estimated standard
errors for the parameter estimates, based on large-sample theory for maximum likelihood estimates.
Unless you are sure that your data set is really large, the estimated standard errors should be viewed as
rough approximations.

If the errors have a Normal distribution with constant variance, it is a standard result from statistics
that maximum likelihood is equivalent to the least-squares objective function, as in the example above.
Other assumptions about measurement errors lead to different objective functions. This is a topic in
statistics so we will mention only one important case. If the errors have a Poisson distribution, which is
often true or close-enough for population samples, then maximum likelihood is approximately equivalent
to least-squares after transforming data and model to square-root scale. That is, for fitting with optim

we would change the objective function TLfit in FitThetaLogist.R by redefining

mse=mean((sqrt(out[,2])-sqrt(xvals))^2)

For fitting with mle the minuslogl function is modified by setting

e2=sqrt(out[,2])-sqrt(xvals)

For more on fitting ODE models to data, see the book chapter Hurtado (2020).

Exercise 8.4 Does this improved objective function make a difference in our θ-logistic example – that
is, does the change in objective function result in any meaningful change in parameter estimates or the

https://cran.r-project.org/web/views/Optimization.html
https://cran.r-project.org/web/views/Optimization.html

8 OPTIMIZATION AND FITTING MODELS TO DATA 50

fitted model solution? Modify the script file for the example, compute the parameter estimates with the
modified objective function, and compare the two sets of parameter estimates.

Trajectory matching can run into problems if the true system is not deterministic. For example, consider
a discrete-time model with random noise

Xt+1 = F (Xt) + σZt (9)

where Xt is a vector of state variables, and Zt is a vector of random perturbations to the state variable
dynamics. The presence of random noise can change qualitative properties of model solutions. For
example, a model that (in the absence of noise) would exhibit oscillatory convergence to a steady state,
may instead exhibit fairly regular cycles. Fitting such data by trajectory matching will lead to incorrect
parameters such that the model has stable periodic solutions in the absence of noise. Other fitting
criteria are therefore more appropriate.

If error-free data are available on all state variables, then (9) is a nonlinear regression model, which
can be fitted by any modern statistics package using nonlinear least squares (in R this is function nls).
More typically one only has data on one or a few state variables. You can then try to choose parameters
(including the noise level σ) so that model output matches overall features of the data such as the range
of variation, periodicity of cycles if they occur, and the pattern of correlation between successive values.
This is called “moment matching” or “method of moments” in the statistical literature. It suffers from
the fact that the choice of which features to match is subjective, but has the advantage of that very
few assumptions are needed about the underlying model, in order for parameter estimates to have good
statistical properties.

Exercise 8.5 Here again is the Rosenzweig-MacArthur model

dn1/dt = r1n1(1− n1/K1)− n2
a1n1
B + n1

dn2/dt = n2
a2n1
B + n1

− r2n2
(10)

Suppose that parameter values r1 = r2 = 1, a1 = 2, a2 = 1.8, B = 200 are known, and you have data
showing the predators cycling regularly between a minimum value of about 95 and a maximum of about
205; you have no data on the prey. Write a script file to estimate K1 by matching these features as
closely as possible. That is, your objective function will take a single argument K1, generate solutions
of the model, and return some measure of how well the model solutions match the observed features of
the data. Since there is only one parameter to be fitted, for this exercise it will be sufficient to plot the
objective function versus the value of K1, and see where it is minimized (for a more accurate result, see
?optimize).

8.2 Controlling the optimization

Parameters affecting how optim proceeds can be set using the optional argument control, which is a
list of options and their values. For example,

fit=optim(p0,TLfit,control=list(method="BFGS",maxit=1000,trace=4,parscale=p0));

Here we have:

� changed the optimization method to BFGS,

� set the maximum number of search steps to 1000,

8 OPTIMIZATION AND FITTING MODELS TO DATA 51

� set the level of tracing to 4 (tracing means printing information to the console window as opti-
mization proceeds, which is useful if things are going badly and you want to know why),

� told optim to scale parameters relative to the initial guess.

There are a lot of optional arguments – see ?optim. Default values are well chosen except that the
iteration limit maxit is suitable for “easy” problems where the function is not too wiggly or convoluted.
If you often find that your safeguard optimization (fit2 in the example above) is different from the first,
try increasing the number of iterations. It is often helpful to use the parscale option. Internally optim

works with parameters scaled relative to the corresponding value in parscale, which by default is a
vector of 1’s. If you are using units are such that the elements of the optimal p are very different in
magnitude – such as r and K in the last exercise – you can eliminate this problem by setting parscale

to be your current best guess for the optimal p.

If optimization is generally working but takes a long time, you might try decreasing the error tolerances
(abstol and reltol in control). Optim tries to find the minimum with the maximum possible accuracy
(given the number of digits used to represent real numbers). Sometimes that results in a lot of time
being spent making tiny, meaningless adjustments to parameter estimates (e.g. involving more significant
digits than are reliable in the data).

Exercise 8.6 We need optimization for reasons besides parameter estimation. Consider a forager’s
expected rate of energy gain R(t1, t2) in a Patch Model with two patch types, travel time T = 3, 70%
patches of type 1 with gain function g1(t) = 2t0.5, and 30% of type 2 with gain function g2(t) = t0.7.
The code snippet below (from an old lab solution) defines the gain rate function:

g1=function(t1) {2*t1^0.5}

g2=function(t2) {t2^0.7}

gainR=function(t1,t2) {

return((0.7*g1(t1)+0.3*g2(t2))/(3+0.7*t1+0.3*t2))

}

Write a script that uses optim to find the values (t∗1, t
∗
2) at which the rate of energy gain R(t1, t2) is

maximized, using the BFGS method. Recall that for optim the objective function must have one input
argument, not two. Also recall that optim finds where a function is minimized; to find where a function
F (x) is maximized you can use −F (x) as the objective function.

8.3 How to optimize

This discussion is based on Kelley (1999), the optimization chapter in Numerical Recipes (available at
www.library.cornell.edu/nr and www.nr.com), and much painful experience fitting models to data.

The basic decision in optimization is how you want to get from your initial guess to a final value: a few
clever steps in parameter space, or a lot of simple steps. Being “clever” means using a lot of information
about the function, either computed at each new evaluation point (e.g. its derivatives and possibly
second derivatives with respect to each argument) or else built up gradually over the search for the
minimum. Using this information the algorithm tries to identify a good direction in which to search for
a local minimum. For example, the first and second derivatives at the current evaluation point define a
quadratic approximation to the objective function. But rather than jumping directly to the minimum
of the quadratic approximation, the algorithm does a one-dimensional search along the line connecting
the current evaluation point and the minimum of the quadratic approximation. The point on that line
where the function value is smallest (as approximated by a one-dimensional minimization algorithm) is
then used as the next evaluation point. Methods of this type in optim include BFGS and L-BFGS-B.
Both of these use derivatives of the objective function, either supplied by the user as a function or else
computed numerically by forming difference quotients, and build up an approximate second derivative
as the function and its derivative are repeatedly evaluated.

9 DOCUMENT CREATION IN RSTUDIO 52

Cleverness is often counterproductive, however, because your function may have multiple local optima
that are “worse” than the desired (global) optimum. To find the global minimum you then have to repeat
the optimization many times, starting from different initial points. The efficiency of each repetition is
often more than outweighed by the need to run many repetitions.

Less clever method often fare better against multiple local minima. They work by gradually narrowing in
on a minimum, so initially they don’t pay much attention to the objective function’s fine-scale structure
(Kelley 1999). The most popular method of this type is the Nelder-Mead Simplex Algorithm. Initially,
values of the function are computed at a set of points (a simplex) surrounding the initial guess, n points
for a function of n variables. At each step, the algorithm tries to replace the worst point (the one with
the highest function value) with a better one, by searching along the line between the worst point and
the average of all the others. If that fails, it may shrink the simplex down around the best point on the
current simplex.

You can also use the ”multi-start” method of picking your favorite algorithm (e.g., Nelder-Mead) and
running it in parallel starting from multiple initial values.

However there really is no cure for the problem of multiple local minima. To be confident of your results
you need to run the optimization from multiple starting points and make sure that you repeatedly find
the same “best” minimum, and always re-start the optimization from the supposed minimum to make
sure that you converge back to it.

For more on Optimization in R please see the CRAN Task View on Optimization and Mathematical
Programming at https://cran.r-project.org/web/views/Optimization.html.

9 Document Creation in Rstudio

Turning in nicely formatted and typed homework solutions or reports for an employer often involves
running R scripts, saving output like figures and tables, then importing them into a document like an
MS Word or LATEXdocument.

There are, however, at least two ways of embedding your R analyses into those documents so that you
can skip the steps of importing R output into your final document, as well as include nicely formatted
R code in that document.

9.1 R Markdown

The first (and probably the easiest, unless you already know some LATEX) is to create an R Markdown
document. In Rstudio, just go to File > New File > R Markdown... to generate a new template,
and visit the URL included in that template to get started. I also recommend the old version of the R
Markdown cheat sheet (the new one is also worth looking at) available at https://www.rstudio.com/

resources/cheatsheets/.

9.2 knitr/Sweave Documents (LATEX with embedded R code & output)

The second option is best suited to those who already are comfortable using LATEX. These knitr docu-
ments (a re-imagined improvement of Sweave) are essentially LATEXdocuments with inserted ‘code blocks’
almost identical to the code blocks discussed in the R Markdown documentation. This allows a document
author to create a LATEXdocument and insert snippets of R code, which is then automatically parsed and
the code and output nicely formatted without any further intervention by the author (e.g., the book chap-
ter Hurtado (2020) was created this way). To get started, you’ll want to follow the LATEXand R/Rstudio

https://cran.r-project.org/web/views/Optimization.html
https://www.rstudio.com/resources/cheatsheets/
https://www.rstudio.com/resources/cheatsheets/

9 DOCUMENT CREATION IN RSTUDIO 53

installation instructions at https://www.pauljhurtado.com/teaching/software.html. I have pro-
vided some knitr template documents, a link to which can be found at https://www.pauljhurtado.

com/latex/.

Note that knitr documents can also run and format the output of code written in other languages (e.g.,
Python) and not only R! This can be done so long as the knitr package in R is able to call that other soft-
ware to run the embedded code. For details see https://bookdown.org/yihui/rmarkdown-cookbook/

eng-python.html in the R Markdown Cookbook by Yihui Xie, Christophe Dervieux, and Emily
Riederer.

References

� G. Fussmann, S.P. Ellner, K.W. Shertzer, and N.G. Hairston, Jr. 2000. Crossing the Hopf bifurca-
tion in a live predator-prey system. Science 290: 1358 - 1360. DOI:10.1126/science.290.5495.1358

� Hurtado, P.J. 2020. Building New Models: Rethinking and Revising ODE Model Assumptions.
In: Callender Highlander H., Capaldi A., Diaz Eaton C. (eds) An Introduction to Undergraduate
Research in Computational and Mathematical Biology. Foundations for Undergraduate Research
in Mathematics. Birkhäuser, Cham. DOI:10.1007/978-3-030-33645-5 1

� Ihaka, R., and R. Gentleman. 1996. R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics 5(3) pp. 299-314. DOI:10.2307/1390807

� Kelley, C.T. Iterative Methods for Optimization. SIAM (Society for Industrial and Applied Math-
ematics), Philadelphia PA.

� Maindonald, J.H. 2004. Using R for Data Analysis and Graphics: Introduction, Code, and Com-
mentary. URL http://www.cran.R-project.org.

� Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes: the Art of
Scientific Computing, 2nd edition. Cambridge University Press (complete editions for C, f77, and
f90 are available online at www.nr.com).

� R Core Team (2017). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

� Verzani, J. 2002. simpleR – using R for Introductory Statistics. URL http://www.cran.

R-project.org.

� Veilleux, B. G. 1976. The analysis of a predatory interaction between Didinium and Paramecium.
Master’s thesis, University of Alberta.

� Veilleux, B. G. 1979. An analysis of the predatory interaction between Paramecium and Didinium
Journal of Animal Ecology 4: 787-803.

https://www.pauljhurtado.com/teaching/software.html
https://www.pauljhurtado.com/latex/
https://www.pauljhurtado.com/latex/
https://bookdown.org/yihui/rmarkdown-cookbook/eng-python.html
https://bookdown.org/yihui/rmarkdown-cookbook/eng-python.html
https://bookdown.org/yihui/rmarkdown-cookbook/
https://doi.org/10.1126/science.290.5495.1358
https://doi.org/10.1007/978-3-030-33645-5_1
https://doi.org/10.2307/1390807
http://www.cran.R-project.org
https://www.R-project.org/
http://www.cran.R-project.org
http://www.cran.R-project.org

	Introduction
	Getting and installing R
	Getting and installing Rstudio
	First interactive calculations

	Scripts and data files
	More R basics: functions and their documentation
	Statistics in R

	Common R Objects: Vectors, Matrices, and Data Frames
	Vectors
	Functions for creating vectors
	Vector addressing

	Matrices
	Creating matrices
	cbind and rbind
	Matrix addressing

	Operations with Matrices and Vectors
	Eigenvalues and eigenvectors
	Eigenvector scalings
	Eigenvalue sensitivities and elasticities

	matrix or Matrix? Classes in R
	Data Frames (and more R tricks)
	Data frame addressing
	More on vector, matrix and data frame addressing

	Iteration (``Looping")
	For-loops
	While-loops
	Logical operators

	Iteration alternatives in R: flavors of apply()

	Branching: using if and else
	Nested if statements
	Functions ifelse() and switch()

	Writing your own functions
	Solving differential equations
	Always use lsoda! Except when you shouldn't...
	The logs trick
	Additional arguments in lsoda

	Optimization and fitting models to data
	What to optimize?
	Controlling the optimization
	How to optimize

	Document Creation in Rstudio
	R Markdown
	knitr/Sweave Documents (LaTeX with embedded R code & output)

	References

