
General Solutions to DE: Properties of a Set of Solutions

Each type of DE covered, has method of solving for general solution (see the section in the

last column for details). A general solution is a way to write a solution to DE, which classifies

all possible solutions; that is, describing the set of solution to a DE.

Initial Value Problems (IVP)

An initial value problems (IVP) is problem which is of this form: Find a function that is a

solution to a differential equation, which also satisfies initial conditions. For example,

(IVP)
nth order DE

y(t0) = α0, y
′(t0) = α1, . . . , y

(n−1)(t0) = αn−1,

Boundary Value Problems (BVP)

A boundary value problem is problem which is of this form: Find a function that is a solution

to a differential equation, which also satisfies boundary conditions. For example,

(BVP)
y′′ + p(x)y′ + q(x)y = g(x)

y(x0) = α0 & y(xf ) = αf

where x0 < xf . Note: the boundary conditions can have condition(s) on the value of the

derivative at either x0 or xf , as well.

Heat Equation and its BVP

The heat equation, a single type of partial differential equation (PDE), is mathematical

model for heat conduction in a rod; many times, we are given information about boundary

conditions. For example,

α2uxx(x, t) = ut(x, t) 0 < x < L, t > 0

u(0, t) = g0(t) & u(L, t) = gL(t)

u(x, 0) = f(x)

About Properties of a Set of Solutions

We learn about properties of a set of solution to a differential equation. It is important to

know the following:

1. Definition of linearly dependence and independence.
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2. How to compute the Wronskian.

3. Theorems relating the Wronskian to (linearly) dependence and independence.

About General Solutions to DE

1. Each method to solve 1st-order DE in the table requires good integration skills.

2. Homogeneous with Constant Coef. Use the Characteristic Equation; requires

good factoring skill.

3. Nonhomogeneous with Constant Coef. Use the above bullet first to find the

homogeneous solution. Then uses method of undetermined coefficients or variation of

parameters which requires solving a system of equations or computing a Wronskian,

respectively.

4. Euler equation. Use the indicial equation.

5. Series solutions. Find recurrence relation for the coefficients, so one can find the

term of the power series.

About IVP

Most of the IVP we have had in this course are solved in two steps: first step, find a general

solution to the DE; second step, use the initial conditions to find the exact solution which

solves the IVP. We learned how to use Laplace Transform to solve IVP’s.

It is important to remember the following:

1. The general solution (usually) has arbitrary constants ci (for example, ygen(t) = c1e
2t+

c2e
t has arbitrary constant c1 and c2). We use the initial conditions to find each ci.

2. Solving an IVP with Laplace Transform, one has to use the table on page 319 of the

textbook.

3. When uc(t) (step or Heaviside function) and/or δ(t − c) (impulse or delta generalize-

function) are present in the DE, we have to use Laplace Transform to solve the IVP.

About BVP

Most of the BVP, we have had in this course are solved in two steps: first step, find a

general solution to the DE; second step, use the boundary conditions to find all possible

solution which solves the BVP. We look at a BVP with an DE with an arbitrary constant

(for example, y′′ + λy = 0); in which, eigenvalues and eigenfunctions are defined.
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About the Heat Equation

Solving the Heat equation uses separation of variables, then eigenvalues and eigenfunctions ;

when there is a BVP, we used Fourier Series.

Example

This is an example of a series solution at a regular singular pt.

Given

2x2y′′ + 3xy′ + (2x2 − 1)y = 0

y′′ +
3x

2x2
y′ +

(2x2 − 1)

2x2
y = 0 mult. by x2

x2y′′ + x

[
x

3x

2x2

]
y′ +

[
x2

(2x2 − 1)

2x2

]
y = 0

x2y′′ + x [xp(x)] y′ +
[
x2q(x)

]
y = 0,

where p and q are as follows:

p(x) =
3

2

(
1

x

)
q(x) = 1− 1

2x2

xp(x) =
3

2
x2q(x) = x2 − 1

2
.

So we have

x2y′′ + x

[
3

2

]
y′ +

[
x2 − 1

2

]
y = 0.

Assume that y =
∑∞

n=0 anx
r+n is a solution to the DE, where a0 6= 0. Thus

x2
∞∑
n=0

(r + n)(r + n− 1)anx
r+n−2 +

[
3

2

]
x

∞∑
n=0

(r + n)anx
r+n−1 +

[
−1

2
+ x2

] ∞∑
n=0

anx
r+n = 0

∞∑
n=0

(r + n)(r + n− 1)anx
r+n +

3

2

∞∑
n=0

(r + n)anx
r+n − 1

2

∞∑
n=0

anx
r+n +

∞∑
n=0

anx
r+n+2 = 0

∞∑
n=0

(
(r + n)(r + n− 1) +

3

2
(r + n)− 1

2

)
anx

r+n +
∞∑
n=2

an−2x
r+n = 0
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(
(r)(r − 1) +

3

2
(r)− 1

2

)
a0x

r+(
(r + 1)(r) +

3

2
(r + 1)− 1

2

)
a1x

r+1+

∞∑
n=2

(
(r + n)(r + n− 1) +

3

2
(r + n)− 1

2

)
anx

r+n +
∞∑
n=2

an−2x
r+n = 0(

(r)(r − 1) +
3

2
(r)− 1

2

)
a0x

r+(
(r + 1)(r) +

3

2
(r + 1)− 1

2

)
a1x

r+1+

∞∑
n=2

[(
(r + n)(r + n− 1) +

3

2
(r + n)− 1

2

)
an + an−2

]
xr+n = 0.

For this sum to be 0 for all x in an interval shows that each coefficient of xr+n in the sum

has to be 0. Since we assumed that a0 6= 0, we have that

(r)(r − 1) +
3

2
(r)− 1

2
=

(
r − 1

2

)
(r + 1) = 0,

So we have that r = 1/2 or r = −1.

First Case: r = 1/2. (
(r + 1)(r) +

3

2
(r + 1)− 1

2

)
a1 =

5

2
a1 = 0,

which implies that a1 = 0. Moreover,(
(r + n)(r + n− 1) +

3

2
(r + n)− 1

2

)
an + an−2 = 0

n(n+
3

2
)an = −an−2

an =
−2

n(2n+ 3)
an−2.(∗)

Now we use (∗) to get a series

a0y1/2(x) = x1/2
∞∑
n=0

anx
n.

We see that a2m+1 = 0, and we have

a2m =
−1

m(4m+ 3)
a2(m−1) = a0

m∏
k=1

−1

k(4k + 3)
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Second Case: r = −1.(
(r + 1)(r) +

3

2
(r + 1)− 1

2

)
a1 = −1

2
a1 = 0,

which implies that a1 = 0. Furthermore,(
(r + n)(r + n− 1) +

3

2
(r + n)− 1

2

)
an + an−2 = 0

n(n− 3

2
)an = −an−2

an =
−2

n(2n− 3)
an−2.(†)

Now we use (†) to get a series

a0y−1(x) = x−1
∞∑
n=0

anx
n.

We see that a2m+1 = 0, and we have

a2m =
−1

m(4m− 3)
a2(m−1) = a0

m∏
k=1

−1

k(4k − 3)
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