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Motivation Probability Concepts

Why Probability?

One answer: Statistics.

But more importantly...

Biological processes are noisy! (See Jagers 2010)

The fundamental units in biology are individuals.
Thus, Demographic (intrinsic) noise is commonplace.

Environments are constantly changing!
Thus, Environmental (extrinsic) noise is also ubiquitous.

In short, ALL models of living systems are, or
are simplifications of, stochastic models.

http://dx.doi.org/10.1007/s00285-010-0335-y
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Why Probability?

So, how/why are probability concepts widely used in science?

A few examples...

Simulation (sampling from distributions, e.g., to mimic data)

Qualitative properties (expected values, expected deviations)

Approximation (Law of Large Numbers)

Deriving relationships (e.g., functional forms) and other models

Statistics (e.g., Maximum Liklihood = Maximum density!)
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Simulation

Example: Linear Regression y = β0 + β1x + ε, where ε ∼ N(0, σ).

set.seed(1492); ## ?set.seed or ask me :-)

b0=2; b1=1; sig=2; y=b0+b1*x+rnorm(length(x),0,sig);

## Error: object ’x’ not found

plot(x,y,pch=19); abline(b0,b1);

## Error: object ’x’ not found

abline(lm(y~x,data=data.frame(x,y)),lty=2)

## Error: object ’x’ not found
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Distribution Properties

Mean vs Expected value? Standard Deviation? Moment Generating
Function? Conjugate Distributions (Baysian prior & posterior)?

x = rbinom(100, 20, p = 0.2)

mean(x) ## Compare mean(x) vs. E(x)=n*p

## [1] 4.04

sd(x) ## Compare sd(x)^2 vs. Var(x)=n*p*(1-p)

## [1] 1.693

sqrt(20 * 0.2 * (1 - 0.2))

## [1] 1.789

General mathematical results (aka Analytical results) are really powerful,
if we can find them! They give general answers to our scientific
questions, guide biological intuition, and speed up computations.

http://en.wikipedia.org/wiki/Conjugate_prior
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Approximation & Deriving Other Models

Computation: Gillespie’s Stochastic Simulation Algorithm is driven by
”coin tosses” (aka Bernoulli random variables) – to speed up
computations, approximate multiple coin tosses with a single binomial
distribution.

Statistical assumptions: Error distributions may be known (for
mechanistic reasons) to be, e.g., Binomial, which can sometimes be
approximated by a Normal distribution.

Dynamics: We might want to ignore the noise, and just look at
averages. Ex: Lotka-Volterra-type foodweb models are really useful!

General Results: Model approximation (or considering special cases of a
model) can yield well understood (approximate) models for which useful,
general results already exist!
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Statistics: Maximum Liklihood

Up to this point, we think of density functions as having fixed parameters
θ = (θ1, ..., θk), with arbitrary input value x . Liklihood functions are the
exact same functions except the ”inputs” are fixed data values x1, ...
xn and our parameters are the arbitrary inputs of interest. Specifically, we
want the parameters that maximize our likelihood function value for this
particular data set.

To see how all this works, we need to start looking at probability
distributions in detail.
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Distribution & Density Functions

Two ways to think about the Normal distribution (a continuous
distribution) from the relationship: F (x) =

∫ x

−∞ f (s)ds

## Standard normal density function f(x) and distribution function F(x)

par(cex = 1.4)

x = seq(-4, 4, length = 200)

plot(x, dnorm(x, mean = 0, sd = 1), type = "l", lwd = 2, ylab = "Density (f)")

plot(x, pnorm(x), type = "l", lwd = 2, ylab = "Cumulative Density (F)")
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Distribution & Density Functions

Discrete distributions: replace integrals with sums. F (x) =
∑x

i=0 f (i)

## Poisson (mean 2) density and distribution functions

x = 0:10

par(cex = 1.4)

plot(x, dpois(x, lambda = 2), pch = 19, ylab = "Mass/Density (f)")

plot(x, ppois(x, lambda = 2), type = "s", ylab = "Cumulative Dens. (F)")

points(x, ppois(x, lambda = 2), pch = 19)
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Exercises

1 Look up which distributions are approximately normal (and for which
parameter values), and demonstrate this graphically in R. This may
(or may not) be helpful:
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

2 Use the code on previous slides (or your own) and plot the density
and distribution functions for these distributions. For each
distributiono, do this in a 2x2 figure. In the top row, compare to a
normal distribution with the same mean and variance. In the bottom
row, do the same but with parameters where the normal
approximation fails.

3 For the programmers: Too easy? Automate this with a for loop, or
use the lattice or ggplot2 packages for the graphics.

http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
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