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Motivation Exercises Density vs. Maximum Likelihood

Why Probability?

One answer: Statistics.

But more importantly...

Biological processes are noisy! (See Jagers 2010)

The fundamental units in biology are individuals.
Thus, Demographic (intrinsic) noise is commonplace.

Environments are constantly changing!
Thus, Environmental (extrinsic) noise is also ubiquitous.

In short, ALL models of living systems are, or
are simplifications of, stochastic models.

http://dx.doi.org/10.1007/s00285-010-0335-y
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Why Probability?

So, how/why are probability concepts widely used in science?

A few examples...

Simulation (sampling from distributions, e.g., to mimic data)

Qualitative properties (expected values, expected deviations)

Approximation (Law of Large Numbers)

Deriving relationships (e.g., functional forms) and other models

Statistics (e.g., Maximum Likelihood = Maximum density!)
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Conceptual Framework
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Simulation

Example: Linear Regression y = β0 + β1x + ε, where ε ∼ N(0, σ).

set.seed(1492); ## ?set.seed or ask me :-)

x=0:10;

b0=2; b1=1; sig=2; y=b0+b1*x+rnorm(length(x),0,sig);

plot(x,y,pch=19); abline(b0,b1);

abline(lm(y~x,data=data.frame(x,y)),lty=2)
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Distribution Properties

Mean vs Expected value? Standard Deviation? Moment Generating
Function? Conjugate Distributions (Baysian prior & posterior)?

x = rbinom(100, 20, p = 0.2)

mean(x) ## Compare mean(x) vs. E(x)=n*p

## [1] 4.06

sd(x) ## Compare sd(x)^2 vs. Var(x)=n*p*(1-p)

## [1] 1.699

sqrt(20 * 0.2 * (1 - 0.2))

## [1] 1.789

General mathematical results (aka Analytical results) are really powerful,
if we can find them! They give general answers to our scientific
questions, guide biological intuition, and speed up computations.

http://en.wikipedia.org/wiki/Conjugate_prior
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Approximation & Deriving Other Models

Computation: Gillespie’s Stochastic Simulation Algorithm is driven by
”coin tosses” (aka Bernoulli random variables) – to speed up
computations, approximate multiple coin tosses with a single binomial
distribution.

Statistical assumptions: Error distributions may be known (for
mechanistic reasons) to be, e.g., Binomial, which can sometimes be
approximated by a Normal distribution.

Dynamics: We might want to ignore the noise, and just look at
averages. Ex: Lotka-Volterra-type foodweb models are really useful!

General Results: Model approximation (or considering special cases of a
model) can yield well understood (approximate) models for which useful,
general results already exist!
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Statistics: Maximum Likelihood

Up to this point, we think of density functions as having fixed parameters
θ = (θ1, ..., θk), with arbitrary input value x . Likelihood functions are the
exact same functions except the ”inputs” are fixed data values x1, ...
xn and our parameters are the arbitrary inputs of interest. Specifically, we
want the parameters that maximize our likelihood function value for this
particular data set.

To see how all this works, we need to start looking at probability
distributions in detail.
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Distribution & Density Functions

Two ways to think about the Normal distribution (a continuous
distribution) from the relationship: F (x) =

∫ x

−∞ f (s)ds

## Standard normal density function f(x) and distribution function F(x)

par(cex = 1.4)

x = seq(-4, 4, length = 200)

plot(x, dnorm(x, mean = 0, sd = 1), type = "l", lwd = 2, ylab = "Density (f)")

plot(x, pnorm(x), type = "l", lwd = 2, ylab = "Cumulative Density (F)")
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Distribution & Density Functions

Discrete distributions: replace integrals with sums. F (x) =
∑x

i=0 f (i)

## Poisson (mean 2) density and distribution functions

x = 0:10

par(cex = 1.4)

plot(x, dpois(x, lambda = 2), pch = 19, ylab = "Mass/Density (f)")

plot(x, ppois(x, lambda = 2), type = "s", ylab = "Cumulative Dens. (F)")

points(x, ppois(x, lambda = 2), pch = 19)
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Exercises

1 Which distributions are approximately Normal? For which parameter
constraints?

TIP: Type ?Distributions in the R console. Focus on familiar
distributions. How do parameters affect distribution shape? Confirm
your intuition by varying parameters and plotting distributions. See
http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

2 Plot the density and distribution functions for these distributions (see
slides for code). Do this in a 2x2 figure: In the top row, compare to
a Normal with the same mean and variance. In the bottom row, do
the same but with parameters where the normal approximation fails.

TIP: Google ”R par mfrow example” for multi-panel plot examples.
See ?par.

3 Advanced option: Automate this with a for loop, or use the
lattice or ggplot2 packages for the graphics.

http://www.math.wm.edu/~leemis/chart/UDR/UDR.html
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Density & Likelihood Functions

Density & Likelihood functions are the same!

Key distinction: As a density function, parameters are constants. As a
Likelihood function, those parameters become the independent variables
(inputs). Why do this? With fixed x values (data), the parameter set
that yields the largest likelihood function value is the desired Maximum
Likelihood Estimate (MLE).

Ex: (Binomial) Suppose random variable x is Binomial with size = 10,
prob = 0.2. That is, x is the number of heads in 10 coin tosses with an
unfair coin that lands heads with probability 0.2. It has density f and
likelihood L (n is known), shown here with their independent variables in
red:

f (x = k|size = n, prob = p) ≡
(
n

k

)
pk(1− p)n−k

L(p|size = n, x = k) ≡
(
n

k

)
pk(1− p)n−k
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Density & Likelihood Functions

Generally, data x from a distribution with density f (x |θ) has likelihood
function L(θ|x) ≡ f (x |θ). Compare the horizontal axis labels below:

## If a binomial experiment yields x=7 heads out of n=20 trials,

## what value of p maximizes the likelihood function?

plot(x, dbinom(x,size=20,prob=0.5), pch=20, ylab="Mass/Density - f(x)")

points(x, dbinom(x,size=20,prob=0.2), pch=20, col="red")

points(x, dbinom(x,size=20,prob=0.8), pch=20, col="blue")

plot(p, dbinom(k,size=20,prob=p), type="l", ylab="Likelihood - L(p)")
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Density & Likelihood Functions

Real data are often independent & identically distributed (iid) replicates.
The joint distribution of an iid data set x = (x1, ..., xN), each xi with
distribution f , is the product of their density functions. Thus, the joint
density fN(x |θ) (& likelihood L) is

∏
i f (xi |θ).

## Same experiment (p=0.3), 10 replicates yield k=8,6,7,7,6,2,7,10,1,6

plot(p, sapply(p,function(x) prod(dbinom(k,size=20,prob=x))),

type="l", ylab="Likelihood - L(p)")
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) With more observations, the
likelihood function narrows and gives
a more confident estimate. (See
previous)

Note that density f (x |n, p) takes
length(x)=10 inputs, while
likelihood L(p|n, x) is a univariate
function (one input; p).
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For more on Maximum Likelihood and statistical probability for ecology
and evolutionary biology, see the relevant chapters in Ben Bolker’s book
(draft chapters online as PDFs) Ecological Models and Data in R at:

http://ms.mcmaster.ca/~bolker/emdbook/

http://ms.mcmaster.ca/~bolker/emdbook/
http://ms.mcmaster.ca/~bolker/emdbook/
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