
Iteration/Looping Branching RegEx

Session 4: Custom Functions,
Iteration/Looping, & Branching

Foundations of Quantitative Ecology (EEOB 8896.11)

Paul J. Hurtado
(hurtado.10@mbi.osu.edu)

Mathematical Biosciences Institute (MBI)
The Ohio State University

Last compile: September 11, 2013

Iteration/Looping Branching RegEx

Functions

Often, it’s helpful to create custom functions for tasks we’ll run more
than once.

See ?function for details.

MyFuncName <- function(arg1, arg2, arg3 = default.value) {
code that does something with the inputs

return(output)

}
To allow vector inputs, not just single-valued inputs

MyNewFunc <- Vectorize(MyFuncName, c("arg1", "arg2"))

Speed things up!

library(compiler)

MyNewFunc <- cmpfun(MyFuncName)

Notice we’re passing functions as arguments to functions!

Q: What happens if we call a function without parentheses?

Iteration/Looping Branching RegEx

Functions

Often, it’s helpful to create custom functions for tasks we’ll run more
than once.

See ?function for details.

MyFuncName <- function(arg1, arg2, arg3 = default.value) {
code that does something with the inputs

return(output)

}
To allow vector inputs, not just single-valued inputs

MyNewFunc <- Vectorize(MyFuncName, c("arg1", "arg2"))

Speed things up!

library(compiler)

MyNewFunc <- cmpfun(MyFuncName)

Notice we’re passing functions as arguments to functions!
Q: What happens if we call a function without parentheses?

Iteration/Looping Branching RegEx

Iteration and Looping

There are multiple ways to repeat procedures in R.

Some are common to nearly all programming languages:

Like for loops, that iterate over a list

for (i in 1:100) {
Output[i] <- Do.Something(i)

}
or while loops, which repeat until a condition is met

i = 0

while (times[i] < end_time) {
i <- i + 1

Output[i] <- Do.Something(i)

times[i] <- Update.time(i)

}

Iteration/Looping Branching RegEx

Iteration and Looping

There are multiple ways to repeat procedures in R.

Some are common to nearly all programming languages:

Like for loops, that iterate over a list

for (i in 1:100) {
Output[i] <- Do.Something(i)

}
or while loops, which repeat until a condition is met

i = 0

while (times[i] < end_time) {
i <- i + 1

Output[i] <- Do.Something(i)

times[i] <- Update.time(i)

}

Iteration/Looping Branching RegEx

Iteration and Looping

Others are specific to R, e.g., the apply() family of functions.

This is standard

for (i in 1:100) {
Output[i] <- Do.Something(i)

}
Equivalently, in R

Output <- lapply(1:100, Do.Something)

See ?sapply, ?apply, ?mapply for details. To replicate something n times

without varying input values:

replicate(n = 5, {
xydata = data.frame(x = 1:100, y = rnorm(100, 1:100, 1))

fit = lm(y ~ x, xydata)

return(fit$coefficients)

})

Iteration/Looping Branching RegEx

Iteration and Looping

for and while loops are fundamental programming tools that help us
with ”computational thinking”, BUT in practice, write vectorized code!

Not vectorized!

Output[1] <- Do.Something(1) ## Horrible.

Output[2] <- Do.Something(2) ## Coding.

Output[3] <- Do.Something(3) ## Style.

...

Output[100] <- Do.Something(100) ## Ugh!

Still not vectorized, but better!

for (i in 1:100) {
Output[i] <- Do.Something(i)

}
Better, but on par with the for loop

Output <- lapply(1:100, Do.Something)

Yes!

Output <- Do.Something(1:100) ## See ?Vectorize

Vectorized code is (1) easier to write/read, AND (2) computationally
efficient. Vectorize() may not always be the solution!

Iteration/Looping Branching RegEx

Iteration and Looping

for and while loops are fundamental programming tools that help us
with ”computational thinking”, BUT in practice, write vectorized code!

Not vectorized!

Output[1] <- Do.Something(1) ## Horrible.

Output[2] <- Do.Something(2) ## Coding.

Output[3] <- Do.Something(3) ## Style.

...

Output[100] <- Do.Something(100) ## Ugh!

Still not vectorized, but better!

for (i in 1:100) {
Output[i] <- Do.Something(i)

}
Better, but on par with the for loop

Output <- lapply(1:100, Do.Something)

Yes!

Output <- Do.Something(1:100) ## See ?Vectorize

Vectorized code is (1) easier to write/read, AND (2) computationally
efficient. Vectorize() may not always be the solution!

Iteration/Looping Branching RegEx

Vectorize!

Function to benchmark

Do.OneThing <- function(x=20,seed=1) { set.seed(seed)

svd(matrix(rnorm(x),x))$d

}
N=5000;

How fast in a for loop?

system.time({ dummy=c(); for(i in 1:N) dummy[i] <- Do.OneThing(i) })

user system elapsed

4.23 0.00 4.87

Using an apply function

system.time(Output <- lapply(1:N, Do.OneThing))

user system elapsed

4.37 0.00 4.37

Or vectorize (literally!)

Do.Something <- Vectorize(Do.OneThing,"x") ## See ?Vectorize

system.time(Output <- Do.Something(1:N))

user system elapsed

4.21 0.00 4.87

Iteration/Looping Branching RegEx

Exercises

Ex. 1: Write a while loop that draws exponentially distributed random
variables (rate=1) until they sum up to 100. Output: the vector of
values.
Ex. 2: Write something similar that draws 100 such exponentially
distributed values using a for loop.
Ex. 4: Do the same, but using replicate().
Bonus: Plot the liklihood of those data for rates in the range (0, 5).

Iteration/Looping Branching RegEx

Branching with if/else

Branching refers to doing different things depending on the input. For
example:

See ?Control, ?ifelse for details

if (condition == TRUE) {
Do.This()

} else {
Do.That()

}
or

if (condition == TRUE) {
Do.This()

} else if (otherthing == TRUE) {
Do.That()

} else {
Do.nothing()

}
or

ifelse(logical.vector, val.if.true, val.if.false)

Ex: color points by sign of y values:

plot(x, y, col = ifelse(yval >= 0, "red", "blue"))

Iteration/Looping Branching RegEx

Regular Expressions

if/else conditions are often based on strings. Regular expressions help
with parsing for such purposes.

my.strs = c("Peter Piper picked", "a peck of pickled peppers.")

gsub("\\s+", ".", my.strs) # see ?regex

[1] "Peter.Piper.picked" "a.peck.of.pickled.peppers."

grep("pickle", my.strs, value = TRUE) # see ?grep

[1] "a peck of pickled peppers."

grepl("pickle", my.strs)

[1] FALSE TRUE

strsplit(paste(my.strs, collapse = " "), "\\s+")

[[1]]

[1] "Peter" "Piper" "picked" "a" "peck" "of"

[7] "pickled" "peppers."

Iteration/Looping Branching RegEx

Project

Exercise:

Download the BBS Data from the course website, and start a new
project directory.

Write code that iterates through bird species, and if the name contains
”Warbler”, plot the trend data.

Modify your code to write the plots to files.

	Iteration/Looping
	Iteration/Looping

	Branching
	Branching

	RegEx
	RegEx

