
MOTIVATION: MULTIVARIATE VS UNIVARIATE

Before we discuss random vectors, here is some statistical motivation for why we care about
multivariate distributions. These emphasize two things: First, linear algebra is a fundamen-
tal part of applied statistics. Don’t avoid it, embrace it! Second, a common use of density
and probability mass functions for parameter estimation are to define likelihoods, which are
joint mass (or density) functions but where we flip-flop our notions about which quantities
in these equations are constants vs variables.

PROBABILITY DENSITY VS LIKELIHOOD

Here’s a crude, graphical way of fitting a normal distribution to a large number of iid data:
Plot a histogram, choose an initial mean µ and variance σ2 then overlay the corresponding
normal density curve. Adjust your guesstimates until it looks like a good fit. In R...

set.seed(661); ## See ?set.seed or ask me :-)

X=rnorm(100,10,2); ## 100 replicates drawn from Normal(mean=10,sd=2)

par(mfrow=c(1,3));

xvals = seq(min(X),max(X),length=100); # for plotting...

hist(X,freq=FALSE,ylim=c(0,.4)); points(xvals,dnorm(xvals,8,1),type="l")

hist(X,freq=FALSE,ylim=c(0,.4)); points(xvals,dnorm(xvals,9,1.75),type="l")

hist(X,freq=FALSE,ylim=c(0,.4)); points(xvals,dnorm(xvals,10,2),type="l")
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Formally, we’d like to compute some “goodness of fit” measure instead of just trusting our
intuition with what “looks like a good fit”. This might be the SSD (sometimes called the sum
of squared errors [SSE ]) from the OLS example above, but another options comes from some
theoretical results in mathematical statistics: the likelihood of parameters µ and σ given the
data X. Here, our estimates are the values of µ and σ that maximize the likelihood.

What is this likelihood? This is defined by the distribution for random vector X, but where
we flip around our notion of what’s fixed and what varies. That is, we treat the x values
(our data) as fixed and our candidate parameter estimates µ and σ are treated as variable
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quantities. Lets look at a specific example to see how we define and use a likelihood function
in practice.

Likelihood Example: Assume all Xi are iid with normal density f(xi;µ, σ). This implies
the joint density fX(x1, ..., xn;µ, σ) =

∏n
i=1 f(xi, µ, σ). Here we can write it as a simple prod-

uct, thanks to the independence of the individual random variables. This density function
defines the likelihood function for parmeters µ and σ

L(µ, σ;x) =
n∏

i=1

f(xi, µ, σ)

Note that we’ve gone from a function of n variables (number of data points) down to a
function of 2 variables (number of parameters), and our domain is no longer the sample
space but is instead the range of possible parameters (µ ∈ R, σ ∈ R+). Again, in R...

par(mfrow = c(1, 2))

Lik = Vectorize(function(mu, sd, xs) prod(dnorm(xs, mean = mu, sd = sd)), "mu")

# fix sd=2, vary mu

curve(Lik(x, 2, X), from = 8, to = 12, main = "MEAN", xlab = expression(mu))

# fix mu, vary sd

Lik = Vectorize(function(mu, sd, xs) prod(dnorm(xs, mean = mu, sd = sd)), "sd")

curve(Lik(10, x, X), from = 0, to = 4, main = "SD", xlab = expression(sigma))

# Optimization algorithms can then be used to refine estimates.
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Concluding Remark: We typically do statistics by treating all of our data as a single
outcome from a joint distribution, even when estimating values from a simple univariate
distribution!
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ORDINARY LEAST SQUARES (OLS)

Suppose you have data yi that are assumed to be observations of normally distributed random
variables Yi with standard deviation σ and a mean µi that depends on different factors Xi

that can be manipulated (or that can otherwise vary) for each experiment. For example,
heights of individuals (Yi) as a function of age, gender, etc. might look like

Yi = Normal(µi = β0 + βiXi1 + · · ·+ βkXik, σ)

Since a normal r.v. with mean µ and standard deviation σ can be written as µ plus a normal
r.v. with mean 0 (i.e., µ+N(0, σ)) it follows that

Yi = β0 + β1Xi1 + · · ·+ βkXik + εi

where each εi are independent normals with mean 0 and standard deviation σ. Writing these
n equations in matrix form yields

Y1
Y2
...
Yn

 =


1 +X11 + · · ·+X1k

1 +X21 + · · ·+X2k
...

1 +Xn1 + · · ·+Xnk



β0
β1
...
βn

 +


ε1
ε2
...
εn


or written in more compact matrix and vector notation,

Y = Xβ + ε

Note that E(Y) = Xβ. Assuming the observed outcomes (data) y = (y1, · · · , yn)T and
inputs X are known, and the goal is to estimate best-fit parameters β (call this estimate
β̂). A good way to compute that estimate is to take the sum of squared differences (SSD)
between the observed data and the expected model output for a given set of parameters β
(i.e., SSD = rT r where r = y − E(Y); a measure of “distance” between model and data)
then use the β that minimizes that distance as our estimate for β̂. It can be shown with a
little linear algebra that

β̂ = (XTX)−1XTy

Therefore we’ve used linear algebra and a little multivariate calculus to turn an optimization
problem into a relatively simple matrix computation!

Concluding Remark: In this course, we will tend to use univariate and simple multivari-
ate examples to facilitate learning important concepts in probability. However, in practice,
statistics is a multivariate endeavor and therefore it pays to be familiar with these basic
probability concepts in a multivariate setting, and also the basic linear algebra tools used in
both theoretical and applied statistics.
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