
JOINT DENSITIES - RANDOM VECTORS - REVIEW

Joint densities describe probability distributions of a random vector X: an n-dimensional
vector of random variables, i.e., X = (X1, . . . , Xn), where all X ′is are rvs.

Discrete random vectors are described by the joint probability density function of Xi (or
joint pdf; also called the joint probability mass function (pmf)), i = {1, . . . , n} denoted by

P (X = x) = P (s ∈ S : Xi(s) = xi for all i) = pX(x1, x2, . . .)

Computing probabilities: For any event A ⊆ Nn, P (X ∈ A) =
∑

a∈A P (X = a).

Continuous random vectors are described by the joint probability density function of Xi

(or joint pdf) denoted by fX(x1, . . . , xn). The pdf has the following properties:

1. fX(x1, . . . , xn) ≥ 0 for every x ∈ Rn.

2.
∫∞
−∞ · · ·

∫∞
−∞ fX(x1, . . . , xn)dx1 · · · dxn = 1.

3. For event A ⊂ Rn, P (X ∈ A) =
∫
A
fX(x)dx =

∫
· · ·

∫
fX(x1, ..., xn)dx1 · · · dxn.

Marginal distributions. Let X be a continuous/discrete random vector having a joint
distribution with pdf/pmf f(x). Then, the one-dimensional distributions of Xi are called
marginal distributions. We compute the marginal distributions as follows:

If X is a discrete random vector, then the distributions of Xi are given by:

pXi
(ki) =

∑
all other Xj=xj

P (x).

If X is a continuous random vector (see p.172), then the marginal distributions of Xi are:

fXi
(xi) =

∫ ∞
−∞
· · ·

∫ ∞
−∞

f(x)dx1 · · · dxn︸ ︷︷ ︸
Integrate over all xj 6=i

Joint cdf of a vector X. The joint cumulative distribution function of X is defined by

FX(x) = P (X1 ≤ x1, . . . , Xn ≤ xn).

Theorem. Let FX,Y (u, v) be a joint cdf of the vector (X, Y ). Then the joint pdf of (X, Y ),

fX,Y , is given by second partial deriveative of the cdf. That is fX,Y (x, y) = ∂2

∂x∂y
FX,Y (x, y)
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INDEPENDENT RANDOM VARIABLES

Definition. Two random variables are called independent iff for every intervals A and B on
the real line P (X ∈ A and Y ∈ B) = P (X ∈ A)P (Y ∈ B).

Theorem. The random variables Xi are independent iff their joint pdf is a product of the
marginal pdfs, that is

fX1,X2,X3,...,Xn(x1, x2, x3, . . . , xn) = fX1(x1)fX2(x2) · · · fXn(xn),

where fX1,X2,X3,...,Xn(x1, x2, x3, . . . , xn) is the joint pdf of the vector (X1, X2, X3, . . . , Xn),
and fX1(x1), fX2(x2), · · · , fXn(xn) are the marginal pdf’s of the variables X1, X2, X3, . . . , Xn.

NOTE: Random variables X and Y are independent iff FX,Y (x, y) = FX(x)FY (y), where
F (x, y) is the joint cdf of (X, Y ), and FX(x) and FY (y) are the marginal cdf’s of the X and
Y, respectively.

Random Sample. A random sample of size n from distribution f is a set X1, X2, X3, . . . , Xn

of independent and identically distributed (iid), with distribution f , random variables.

CONDITIONAL DISTRIBUTIONS

Let (X, Y ) be a random vector with some joint pdf or pmf. Consider the problem of finding
the probability that X=x AFTER a value of Y was observed. To do that we develop
conditional distribution of X given Y=y.

Definition. If (X, Y ) is a discrete random vector with pmf pX,Y (x, y), and if P (Y = y) > 0,
then the conditional distribution of X given Y=y is given by the conditional pmf

pX|Y=y(x) =
pX,Y (x, y)

pY (y)
.

Similarily, if P (X = x) > 0, then the conditional distribution of Y given X=x is given by

the conditional pmf pY |X=x(y) =
pX,Y (x,y)

pX(x)
.

Definition. If (X, Y ) is a continuous random vector with pdf fX,Y (x, y), and if fY (y) > 0,
then the conditional distribution of X given Y=y is given by the conditional pdf

fX|Y=y(x) =
fX,Y (x, y)

fY (y)
.

Similarily, if fX(x) > 0, then the conditional distribution of Y given X=x is given by the

conditional pdf fY |X=x(y) =
fX,Y (x,y)

fX(x)
.
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Independence and conditional distributions. If random variables X and Y are inde-
pendent, then their marginal pdf/pmf’s are the same as their conditional pdf/pmf’s. That is
fY |X=x(y) = fY (y) and fX|Y=y(x) = fX(x), for all y and x where fY (y) > 0 and fX(x) > 0,
respectively.

FUNCTIONS OF RANDOM VARIABLES:
PDF OF A SUM, PRODUCT OR QUOTIENT

Let X and Y be independent random variables with pdf or pmf’s fX and fY or pX and pY ,
respectively. Then,

If X and Y are discrete random variables, then the pmf of their sum W = X+ Y is

pW (w) =
∑
allx

pX(x)pY (w − x).

If X and Y are continuous random variables, then the pdf of their sum W = X+ Y is the
convolution of the individual densities:

fW (w) =

∫ ∞
−∞

fX(x)fY (w − x)dx.

If X and Y are independent continuous random variables, then the pdf of their quotient
W = Y/X is given by:

fW (w) =

∫ ∞
−∞
| x | fX(x)fY (wx)dx.

For a proof of the above result, and the statement below, see pg 181-182 in the text.

If X and Y are independent continuous random variables, then the pdf of their product
W = XY is given by:

fW (w) =

∫ ∞
−∞

1

| x |
fX(w/y)fY (y)dy =

∫ ∞
−∞

1

| x |
fX(x)fY (w/x)dx.
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MORE ON EXPECATION, VARIANCE, AND COVARIANCE

Expected value of a function. Let (X, Y ) be a discrete random vector with pmf p(x, y)
or continuous random vector with pdf f(x, y). Let g(·) be a real values function of X and
Y . Then, the expected value of the random variable g(X, Y ) is given by:

E(g(X, Y )) =
∑
allx

∑
ally

g(x, y)p(x, y), in discrete case, and

E(g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy, in continuous case,

provided that the sums and the integrals converge absolutely. This generalizes, as expected,
to n-dimensional random vectors X.

Note: Some treat the terms mean and expected value synonymously. I will try to restrict
the use of the term mean to refer to the arithmetic mean of a series of numbers.

Expected value of a sum of random variables. Let X1, X2, . . . , Xn be any random
variables with finite expected values, and let a1, a2, . . . , an be a set of real numbers. Then

E(a1X1 + a2X2 + · · ·+ anXn) = a1E(X1) + a2E(X2) + · · ·+ anE(Xn).

Expected value of a product of independent random variables. If X and Y are
independent random variables with finite expectations, then E(XY ) = E(X)E(Y ).

Variance of a sum of independent random variables. Let X1, X2, . . . , Xn be any
independent random variables with finite second moments (i.e. E(X2

i ) < ∞), and let
a1, a2, . . . , an be a set of real numbers. Then

V ar(a1X1 + a2X2 + · · ·+ anXn) = a21V ar(X1) + a22V ar(X2) + · · ·+ a2nV ar(Xn).

Covariance. The covariance of random variables X and Y (each with finite variances) is
written Cov(X, Y ) or σ(X, Y ) and defined as

Cov(X, Y ) = E((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y ).

For random vectors X = (X1, . . . , Xn)T and Y = (Y1, . . . , Ym)T the covariance matrix is

Cov(X, Y ) = E((X − E(X))(Y − E(Y )T )) = E(XY T )− E(X)E(Y )T .

The i, jth element of the covariance matrix is Cov(Xi, Yj) (sometimes written σXiYj
or simply

σij). The ith diagonal term of Cov(X,X) is the variance of Xi (V ar(Xi)).
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Additional properties of covariance: For random vectors X, Y , and Z and constant c,

1. σ(X, c) = σ(c,X) = 0

2. σ(X, Y ) = σ(Y,X)T

3. σ(X + Y, Z) = σ(X,Z) + σ(Y, Z) and σ(X, Y + Z) = σ(X, Y ) + σ(X,Z)

4. σ(cX, Y ) = c σ(X, Y ) = σ(X, cY )

Correlation: If Cov(X, Y ) = 0 we say X and Y are uncorrelated (if Cov(X, Y ) 6= 0, X and
Y are correlated).

Note: Independent random variables are always uncorrelated, however the reverse isn’t
generally true! The one general case where uncorrelated implies independent is where the
joint distribution of X and Y is multivariate-Normal (aka Gaussian).

Note: Correlation is often described using correlation coefficients (e.g., see pg 576).

MOMENT GENERATING FUNCTIONS

Definition. The moment generating function MX(t) of random variable X is given by

MX(t) = E(etX) =


∑
all k

etkpX(k) if X discrete,∫∞
−∞ e

txf(x)dx if X continuous,

at all real values t for which the expectation exists.

Use for mgf’s. Moment generating functions are very useful in probability and mathemat-
ical statistics. They are primarily used for two purposes:

1. Finding moments of random variables, and

2. Identifying distributions of random variables.

Theorem. Let X be a continuous random variable with pdf f(x). Assume that the pdf f(x)
is sufficiently smooth for the order of differentiation and integration to be exchanged. Let
MX(t) be the mgf of X. Then

M
(r)
X (0) = E(Xr),

provided that the rth moment of X exists.
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Theorem: Identifying distributions. Suppose that X1 and X2 are random variables
with pdf/pmf’s fX1(x) and fX2(x), respectively. Suppose that MX1(t) = MX2(t) for all t in
a neighborhood of 0. Then X1 and X2 are equal in distribution, that is fX1(x) = fX2(x).

Theorem: Properties of mgf’s. This theorem describes the mgf of a linear function and
of a sum of independent random variables.

1. Mgf of a linear function. Suppose that X is a random variable with mgf MX(t),
and let Y = aX + b, where a and b are real numbers. Then, the mgf of Y is given by:

MY (t) = ebtMX(at).

2. Mgf of a sum of independent rv’s. Suppose X1, X2, . . . , Xn are independent ran-
dom variables with mgf’s MX1(t),MX2(t), . . . ,MXn(t), respectively. Then, the mgf of
their sum is the product of the mgf’s, that is

MX1+X2+···+Xn(t) = MX1(t) ·MX2(t) · · ·MXn(t).
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