
SPECIAL DISTRIBUTIONS

Some distributions are ”special” because they are useful. They include: Poisson, exponential,
Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric
distributions. We already saw and used exponential, Binomial and hypergeometric distribu-
tions. We will now explore the definitions and properties of the other ”special” distributions.

Things to remember when learning probability distributions:

Mathematical Details

1. Is it continuous, or discrete?
What’s the sample space?

2. Density(mass) function?
Parameter ranges?

3. Expected value formula? Variance?

Application Context

1. Corresponding experiment?
Cartoon example?

2. Any common applications?
Why is it “special” or useful?

3. Relationships to other distributions?

Bernoulli. Sample space {0, 1}, mean p, variance p(1− p), and mass function

px = px(1− p)1−x

Binomial. The number of successes in n Bernoulli(p) trials. Discrete random variable with
sample space {0, . . . , n}, and mass function (with parameters n, p) given by

px =

(
n

k

)
px(1− p)n−x

The mean is np and the variance is np(1− p).

Multinomial (Generalized Binomial). Discrete random variable for the number of each
of k types of outcomes in n trials. Sample space {0, ..., n}k, and mass function (with param-
eters n,p1,...,pk where the

∑
pi = 1) given by

px1,...,xk =
n!

x1! · · · xk!
px11 · · · p

xk
k

The marginals are binomial, thus the means are E(Xi) = npi and the variances are V ar(Xi) =
npi(1− pi).

Hypergeometric. Discrete r.v. with sample space {0, ..., w}, and mass function (with
parameters N , w, n) given by

px =

(
w
x

)(
N−w
n−x

)(
N
n

)
The mean is nw/N and the variance is nw/N(1− w/N)(N − n)/(N − 1).
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Generalized Hypergeometric. Discrete random variable with parameters n, n1, ..., nk,∑
ni = N , with mass function

px1,...,xk =

(
n1

x1

)
· · ·
(
nk

xk

)(
N
n

)
The marginals are Hypergeometric.

Uniform (Continuous). Discrete Continuous random variable with sample space {}, and
density function

fx = (b− a)−1

The mean is (b+ a)/2 and the variance is (b− a)2/12.

Poisson distribution. Discrete random variable with λ > 0, mass function

P (X = k) =
e−λ(λk)

k!
for k = 0, 1, 2, . . . .

The mean and variance are the same, namely E(X) = V ar(X) = λ.

Poisson Approximation to Binomial distribution. Let X ∼ Bin(n, p) be a binomial
random variable with number of trials n and probability of success p. Then, for large n and
small p, that is when n→∞ and p→ 0 in such a way that np = λ is held constant, we have

lim
n→∞,p→0

P (X = k) =
e−np(np)k

k!
=
e−λ(λ)k

k!
.

For large values of n, small p, we can therefore approximate the Binomial distribution with

a Poisson distribution: P (X = k) ≈ e−np(np)k

k!
.

Poisson Model. Suppose events can occur in space or time in such a way that:

1. The probability that two events occur in the same small area or time interval is zero.

2. The events in disjoint areas or time intervals occur independently.

3. The probability than an event occurs in a given area or time interval T depends only
on the size of the area or length of the time interval, and not on their location.

Poisson Process. Suppose that events satisfying the Poisson model occur at the rate λ per
unit time. Let X(t) denote the number of events occuring in time interval of length t. Then

P (X = k) =
e−λt(λt)k

k!
.
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X(t) is called Poisson process with rate λ.

Exponential Continuing from above, the waiting time Y between consecutive events has
an exponential distribution with parameter λ (that is with mean 1/λ), that is P (Y > t) =
e−λt, t > 0, or equivalently,

f(t) = λe−λt, for t > 0.

The mean is 1/λ and the variance is 1/λ2.
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Geometric and Negative Binomial distributions.

Geometric experiment: Toss a fair coin until the first H appears. Let X=number of tosses
required for the first H. Then X has geometric distribution with probability of success 0.5.

Definition: Geometric distribution. A random variable X has a geometric distribution
with parameter p if its pmf is

P (X = k) = (1− p)k−1p, for k = 1, 2, 3, . . . .

It is denoted X ∼ Geo(p). The mean and variance of a geometric distribution are EX = 1/p

and V ar(X) = 1−p
p2

, respectively. The mgf of X is MX(t) = pet

1−(1−p)et .

Memoryless property of geometric distribution. Let X ∼ Geo(p), then for any n and
k, we have

P (X = n+ k | X > n) = P (X = k).

Negative Binomial experiment. Think of geometric experiment performed until we get
r successes. Let X = number of trials until we have r successes.

Definition: Geometric distribution. A random variable X has a negative binomial
distribution with parameters r and p if its pmf is

pX(k) = P (X = k) =

(
k − 1
r − 1

)
(1− p)k−rpr, for k = r, r + 1, r + 2, . . . . (1)

A common notation for X is X ∼ NegBin(r, p). The mean and variance of X are EX = r/p

and V arX = r(1−p)
p2

. The mgf of X is MX(t) =
[

pet

1−(1−p)et

]r
.

Connection between negative binomial and geometric distributions. IfX1, X2, . . . , Xr

are iid Geo(p), then
∑r

i=1Xi ∼ NegBin(r, p).
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The Gamma distribution.

Definition. The Gamma function. For any positive real number r > 0, the gamma
function of r is denoted Γ(r) and equal to

Γ(r) =

∫ ∞
0

yr−1e−ydy.

Theorem. Properties of Gamma function. The Gamma(r) function satifies the follow-
ing properties:

1. Γ(1) = 1.

2. Γ(r) = (r − 1)Γ(r − 1).

3. For r integer, we have Γ(r) = (r − 1)!.

Definition of the Γ(r, λ) random variable. For any real positive numbers r > 0 and
λ > 0, a random variable with pdf

fX(x) =
λr

Γ(r)
xr−1e−λx, x > 0,

is said to have a Gamma distribution with parameters r and λ, denoted X ∼ Γ(r, λ).

Theorem: moments and mgf of a gamma distribution. If X ∼ Γ(r, λ) then

1. EX= r/λ.

2. Var(X)= r/λ2.

3. Mgf of X is MX(t) = (1− t/λ)r.

Theorem. Let X1, X2, . . . , Xn be iid exponential random variables with parameter λ, that
is with mean 1/λ. The the sum of Xi’s has a gamma distribution with parameters n and λ.
More precisely,

∑n
i=1Xi ∼ Γ(r, λ).

Theorem. A sum of independent gamma random variables X ∼ Γ(r, λ) and Y ∼ Γ(s, λ)
with the same λ has a gamma distribution with r′ = r + s and the same λ. That is
X + Y ∼ Γ(r + s, λ).

Note: In a sequence of Poisson events occurring with rate λ per unit time/area, the waiting
time for the r’th event has a Γ(r, λ) distribution.
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